这是多目标跟踪器TrackM的代码实现, 算法思路参考了deep_sort,AB3DMOT。增加了C++版本,可直接将检测结果作为输入。
[ ] python 实现
[ ] C++ 实现
#Values Name Description
----------------------------------------------------------------------------
1 frame Frame within the sequence where the object appearers
1 track id Unique tracking id of this object within this sequence
1 type Describes the type of object: 'Car', 'Van', 'Truck',
'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram',
'Misc' or 'DontCare'
1 truncated Float from 0 (non-truncated) to 1 (truncated), where
truncated refers to the object leaving image boundaries.
Truncation 2 indicates an ignored object (in particular
in the beginning or end of a track) introduced by manual
labeling.
1 occluded Integer (0,1,2,3) indicating occlusion state:
0 = fully visible, 1 = partly occluded
2 = largely occluded, 3 = unknown
1 alpha Observation angle of object, ranging [-pi..pi]
4 bbox 2D bounding box of object in the image (0-based index):
contains left, top, right, bottom pixel coordinates
3 dimensions 3D object dimensions: height, width, length (in meters)
3 location 3D object location x,y,z in camera coordinates (in meters)
1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi]
1 score Only for results: Float, indicating confidence in
detection, needed for p/r curves, higher is better.