neurogenomics / scKirby

Automated ingestion and conversion of various single-cell data formats, within and across species
https://neurogenomics.github.io/scKirby/
11 stars 2 forks source link
format-converter r r-package single-cell-rna-seq standardization

Automated ingestion and conversion of various single-cell data formats


License: GPL (\>=
3)
R build
status

Authors: Brian Schilder

Most recent update: Sep-13-2023

Intro

There’s a lot of single-cell omics file/object formats out there, and not all tools support all of these formats. scKirby aims to make switching between these formats much easier by running several steps within a single function: ingest_data(). Alternatively, users can run any of these steps separately using the designated sub-functions.

  1. Read: Automatically infers the file/object type and loads it (sub-function: read_data()).
  2. Convert: Converts it to the desired file/object type (sub-function: to_<format>).
  3. Save: Saves the converted file/object (sub-function: save_data()).

Documentation website

Vignette: data ingestion

Vignette: conda environments

i/o formats

Supported input formats

Supported output formats

Planned output formats

Notes:

Installation

if(!require("remotes")) install.packages("remotes")

remotes::install_github("neurogenomics/scKirby")

Conda environments

Updating Seurat objects

Seurat’s UpdateSeuratObject() can only update objects from the version immediately previous to the version of Seurat you currently have installed (e.g. Seurat v2 –> v3). This means you can’t import an object created in Seurat v1 and directly upgrade it to Seurat v3. We have provided yaml files when can be used to create separate envs for each version of Seurat here.

For more details, see the scKirby conda env tutorial.

Session Info

``` r utils::sessionInfo() ``` ## R version 4.2.1 (2022-06-23) ## Platform: x86_64-apple-darwin17.0 (64-bit) ## Running under: macOS Big Sur ... 10.16 ## ## Matrix products: default ## BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib ## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib ## ## locale: ## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 ## ## attached base packages: ## [1] stats graphics grDevices utils datasets methods base ## ## loaded via a namespace (and not attached): ## [1] pillar_1.9.0 compiler_4.2.1 RColorBrewer_1.1-3 ## [4] BiocManager_1.30.20 yulab.utils_0.0.6 tools_4.2.1 ## [7] digest_0.6.31 jsonlite_1.8.4 evaluate_0.21 ## [10] lifecycle_1.0.3 tibble_3.2.1 gtable_0.3.3 ## [13] pkgconfig_2.0.3 rlang_1.1.1 cli_3.6.1 ## [16] rstudioapi_0.14 rvcheck_0.2.1 yaml_2.3.7 ## [19] xfun_0.40 fastmap_1.1.1 dplyr_1.1.2 ## [22] knitr_1.44 generics_0.1.3 desc_1.4.2 ## [25] vctrs_0.6.3 dlstats_0.1.7 rprojroot_2.0.3 ## [28] grid_4.2.1 tidyselect_1.2.0 here_1.0.1 ## [31] data.table_1.14.8 glue_1.6.2 R6_2.5.1 ## [34] fansi_1.0.4 rmarkdown_2.22 ggplot2_3.4.2 ## [37] badger_0.2.3 magrittr_2.0.3 scales_1.2.1 ## [40] htmltools_0.5.5 rworkflows_0.99.13 colorspace_2.1-0 ## [43] renv_0.17.3 utf8_1.2.3 munsell_0.5.0