nfcore/atacseq is a bioinformatics analysis pipeline used for ATAC-seq data.
The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!
On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources.The results obtained from the full-sized test can be viewed on the nf-core website.
FastQC
)Trim Galore!
)BWA
)
2.(Chromap
). For paired-end reads only working until mapping steps, see here
3.(Bowtie2
)
4.(STAR
)picard
)picard
)
picard
)SAMtools
)SAMtools
, BEDTools
)SAMtools
)SAMtools
)SAMtools
)SAMtools
)BAMTools
)BAMTools
)BAMTools
; paired-end only)Pysam
; paired-end only)Pysam
; paired-end only)Pysam
; paired-end only)picard
, Preseq
)BEDTools
, bedGraphToBigWig
)deepTools
)deepTools
)MACS2
)HOMER
)BEDTools
)featureCounts
)R
, DESeq2
)ataqv
)picard
)
picard
)SAMtools
)BEDTools
, bedGraphToBigWig
)MACS2
)HOMER
)BEDTools
)featureCounts
)R
, DESeq2
)IGV
).ataqv
, MultiQC
, R
)Note If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with
-profile test
before running the workflow on actual data.
To run on your data, prepare a tab-separated samplesheet with your input data. Please follow the documentation on samplesheets for more details. An example samplesheet for running the pipeline looks as follows:
sample,fastq_1,fastq_2,replicate
CONTROL,AEG588A1_S1_L002_R1_001.fastq.gz,AEG588A1_S1_L002_R2_001.fastq.gz,1
CONTROL,AEG588A1_S1_L003_R1_001.fastq.gz,AEG588A1_S1_L003_R2_001.fastq.gz,2
CONTROL,AEG588A1_S1_L004_R1_001.fastq.gz,AEG588A1_S1_L004_R2_001.fastq.gz,3
Now, you can run the pipeline using:
nextflow run nf-core/atacseq --input samplesheet.csv --outdir <OUTDIR> --genome GRCh37 --read_length <50|100|150|200> -profile <docker/singularity/podman/shifter/charliecloud/conda/institute>
See usage docs for all of the available options when running the pipeline.
Warning: Please provide pipeline parameters via the CLI or Nextflow
-params-file
option. Custom config files including those provided by the-c
Nextflow option can be used to provide any configuration except for parameters; see docs.
For more details and further functionality, please refer to the usage documentation and the parameter documentation.
To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.
The pipeline was originally written by Harshil Patel (@drpatelh) from Seqera Labs, Spain and converted to Nextflow DSL2 by Björn Langer (@bjlang) and Jose Espinosa-Carrasco (@JoseEspinosa) from The Comparative Bioinformatics Group at The Centre for Genomic Regulation, Spain under the umbrella of the BovReg project.
Many thanks to others who have helped out and contributed along the way too, including (but not limited to): @ewels, @apeltzer, @crickbabs, drewjbeh, @houghtos, @jinmingda, @ktrns, @MaxUlysse, @mashehu, @micans, @pditommaso and @sven1103.
If you would like to contribute to this pipeline, please see the contributing guidelines.
For further information or help, don't hesitate to get in touch on the Slack #atacseq
channel (you can join with this invite).
If you use nf-core/atacseq for your analysis, please cite it using the following doi: 10.5281/zenodo.2634132
An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md
file.
You can cite the nf-core
publication as follows:
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.
Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.