xtsv
framework
Docker image and runnable docker form
17 Sep 2019 MILESTONE#4 (production) = xtsv and dummyTagger separated, UDPipe, Hunspell added, many API breaks compared to the previous milestone, Runnable Docker image, dropped DepToolPy, and many more changes.
If a bug is found please leave feedback with the exact details.
See docs/cite.bib
for BibTeX entries.
If you use the emtsv system, please cite:
Simon Eszter, Indig Balázs, Kalivoda Ágnes, Mittelholcz Iván, Sass Bálint, Vadász Noémi. Újabb fejlemények az e-magyar háza táján. In: Berend Gábor, Gosztolya Gábor, Vincze Veronika (szerk.): MSZNY 2020, XVI. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2020). Szeged: Szegedi Tudományegyetem Informatikai Tanszékcsoport, 29-42.
Balázs Indig, Bálint Sass, Eszter Simon, Iván Mittelholcz, Noémi Vadász, and Márton Makrai: One format to rule them all – The emtsv pipeline for Hungarian. In: Proceedings of the 13th Linguistic Annotation Workshop. Association for Computational Linguistics, 2019, 155-165.
Indig Balázs, Sass Bálint, Simon Eszter, Mittelholcz Iván, Kundráth Péter, Vadász Noémi. emtsv – Egy formátum mind felett. In: Berend Gábor, Gosztolya Gábor, Vincze Veronika (szerk.): MSZNY 2019, XV. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2019). Szeged: Szegedi Tudományegyetem Informatikai Tanszékcsoport, 235-247.
Váradi Tamás, Simon Eszter, Sass Bálint, Mittelholcz Iván, Novák Attila, Indig Balázs: e-magyar – A Digital Language Processing System. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 1307-1312.
Váradi Tamás, Simon Eszter, Sass Bálint, Gerőcs Mátyás, Mittelholcz Iván, Novák Attila, Indig Balázs, Prószéky Gábor, Farkas Richárd, Vincze Veronika: Az e-magyar digitális nyelvfeldolgozó rendszer. In: MSZNY 2017, XIII. Magyar Számítógépes Nyelvészeti Konferencia, Szeged: Szegedi Tudományegyetem Informatikai Tanszékcsoport, 49-60.
If you use emMorph module, please cite:
Attila Novák, Borbála Siklósi, Csaba Oravecz: A New Integrated Open-source Morphological Analyzer for Hungarian. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris: European Language Resources Association (ELRA).
Attila Novák: A New Form of Humor -- Mapping Constraint-Based Computational Morphologies to a Finite-State Representation. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), Paris: European Language Resources Association (ELRA).
If you use emTag (PurePos) module, please cite:
Orosz György, Novák Attila: PurePos 2.0: a hybrid tool for morphological disambiguation. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2013), 539-545.
If you use emBERT module, please cite:
Nemeskey Dávid Márk: Egy emBERT próbáló feladat. In: MSZNY 2020, XVI. Magyar Számítógépes Nyelvészeti Konferencia. Szeged: Szegedi Tudományegyetem Informatikai Tanszékcsoport, 409-418.
If you use emPreverb or emCompound module, please cite:
Pethő Gergely, Sass Bálint, Kalivoda Ágnes, Simon László, Lipp Veronika: Igekötő-kapcsolás. In: MSZNY 2022, XVIII. Magyar Számítógépes Nyelvészeti Konferencia. Szeged: Szegedi Tudományegyetem Informatikai Intézet, 77-91.
The emtsv system is a replacement for the original https://github.com/nytud/hunlp-GATE system.
emtsv is licensed under LGPL 3.0. The submodules have their own licenses.
docker pull mtaril/emtsv:latest
Here we present the usage scenarios. The individual modules are documented in detail below.
To extend the toolchain with new modules just add new modules to config.py
.
emtsv
server(recommended way) Run the docker image to provide a REST API service for emtsv
docker run --rm -p5000:5000 -it mtaril/emtsv # REST API starts listening at http://127.0.0.1:5000
The container starts two emtsv processes by default. Should the throughput
be insufficient (or conversely, the memory requirements too great even
with two processes), this number can be configured via the
EMTSV_NUM_PROCESSES
variable:
docker run --rm -p5000:5000 -it -e "EMTSV_NUM_PROCESSES=4" mtaril/emtsv
(only for development) Flask
debug server (single threaded, one request at a time):
# Without parameters!
python3 ./main.py
When the server outputs a message like * Running on
then it is ready to accept requests at http://127.0.0.1:5000 .
We do not recommend using this method in production as it is built atop of Flask debug server! Please consider using the Docker image for REST API in production!
Any wsgi server (uwsgi
, gunicorn
, waitress
, etc.) can be configured to run with docker/emtsvREST.wsgi .
emtsv
serverGiven that the server is running:
curl
:
echo "A kutya elment sétálni." | curl -F "file=@-" http://127.0.0.1:5000/tok/morph/pos
>>> import requests
>>> # With input file
>>> # The URL contains the tools to be run separated by `/` instead of ',' used in the CLI
>>> r = requests.post('http://127.0.0.1:5000/tok/morph/pos', files={'file': open('tests/test_input/input.test', encoding='UTF-8')})
>>> print(r.text)
...
>>> # With input text
>>> r = requests.post('http://127.0.0.1:5000/tok/morph/pos', data={'text': 'A kutya elment sétálni.'})
>>> print(r.text)
...
>>> # CoNLL style comments can be enabled per request (disabled by default):
>>> r = requests.post('http://127.0.0.1:5000/tok/morph/pos', files={'file':open('tests/test_input/input.test', encoding='UTF-8')}, data={'conll_comments': True})
>>> print(r.text)
...
The server checks whether the module order with the provided input data is feasible, and returns an error message if there are any problems.
echo "A kutya elment sétálni." | python3 ./main.py tok,spell,morph,pos,conv-morph,dep,chunk,ner
echo "A kutya elment sétálni." | \
python3 main.py tok | \
python3 main.py spell | \
python3 main.py morph | \
python3 main.py pos | \
python3 main.py conv-morph | \
python3 main.py dep | \
python3 main.py chunk | \
python3 main.py ner
emtsv
can also be used with input or output streams redirected or with string input (this applies to the runnable docker form as well):
python3 ./main.py tok,spell,morph,pos,conv-morph,dep,chunk,ner -i input.txt -o output.txt
python3 ./main.py tok,spell,morph,pos,conv-morph,dep,chunk,ner --text "A kutya elment sétálni."
cat input.txt | docker run -i mtaril/emtsv tok,morph,pos > output.txt
emtsv
directory or make sure the emtsv installation is in the PYTHONPATH
environment variableimport emtsv
Now the full API is accessible (see the example above):
import sys
from emtsv import build_pipeline, jnius_config, tools, presets, process, pipeline_rest_api, singleton_store_factory
jnius_config.classpath_show_warning = False # To suppress warning
# Imports end here. Must do only once per Python session
# Set input from any stream or iterable and output stream...
input_data = sys.stdin
output_iterator = sys.stdout
# Raw, or processed TSV input list and output file...
# input_data = iter(['A kutya', 'elment sétálni.']) # Raw text line by line
# Processed data: header and the token POS-tag pairs line by line
# input_data = iter([['form', 'xpostag'], ['A', '[/Det|Art.Def]'], ['kutya', '[/N][Nom]'], ['elment', '[/V][Pst.NDef.3Sg]'], ['sétálni', '[/V][Inf]'], ['.', '.']])
# output_iterator = open('output.txt', 'w', encoding='UTF-8') # File
# input_data = 'A kutya elment sétálni.' # Or raw string in any acceptable format.
# Select a predefined task to do or provide your own list of pipeline elements
used_tools = ['tok', 'morph', 'pos']
conll_comments = True # Enable the usage of CoNLL comments
# Run the pipeline on input and write result to the output...
output_iterator.writelines(build_pipeline(input_data, used_tools, tools, presets, conll_comments))
# Alternative: Run specific tool for input streams (still in emtsv format).
# Useful for training a module (see Huntag3 for details):
output_iterator.writelines(process(sys.stdin, an_inited_tool))
# Or process individual tokens further... WARNING: The header will be the first item in the iterator!
for tok in build_pipeline(input_data, used_tools, tools, presets, conll_comments):
if len(tok) > 1: # Empty line (='\n') means end of sentence
form, xpostag, *rest = tok.strip().split('\t') # Split to the expected columns
# Alternative2: Flask application (REST API)
singleton_store = singleton_store_factory()
app = application = pipeline_rest_api(name='e-magyar-tsv', available_tools=tools, presets=presets,
conll_comments=conll_comments, singleton_store=singleton_store,
form_title='e-magyar text processing system',
doc_link='https://github.com/nytud/emtsv')
# And run the Flask debug server separately
app.run()
The public API is equivalent to the xtsv
API
Please see the specification in detail in the xtsv
documentation.
For examples see files in tests/test_input
and tests/test_output
directories.
Modules are defined in config.py
. The current toolchain consists of the following modules which can be called by their names (or using their shorthand names in brackets):
emToken
(tok
): TokenizeremMorph
(morph
): Morphological analyser together with emLem lemmatiserhunspell
(spell
): Spellchecker, stemmer and morphological analyseremTag
(pos
): POS-taggeremChunk
(chunk
): Maximal NP-chunkeremNER
(ner
): Named-entity recogniseremmorph2ud
(conv-morph
): Converter from emMorph code to UDv1 upos and feats formatemmorph2ud2
(conv-morph2
): Converter from emMorph code to UDv2 upos and feats formatemDep-ud
(dep
): Dependency parseremDep-ud50
(dep50
): Dependency parseremCons
(cons
): Constituent parseremCoNLL
(conll
): Converter from emtsv to CoNLL-U formatemDummy
(dummy-tagger
): Example moduleudpipe-tok
: The UDPipe tokeniserudpipe-pos
: The UDPipe POS-taggerudpipe-parse
: The UDPipe depenceny parserudpipe-pos-parse
: From POS-tagging to dependency parsing in 'one step' with UDPipe, roughly (!) the same as udpipe-pos,udpipe-parse
udpipe-tok-parse
: From tokenisation to dependency parsing in 'one step' with UDPipe, roughly (!) the same as udpipe-tok,udpipe-pos,udpipe-parse
udpipe-tok-pos
: From tokenisation to POS-tagging in 'one step' with UDPipe, roughly (!) the same as udpipe-tok,udpipe-pos
emTerm
(term
): a module for marking single word and multi-word units in POS-tagged textemZero
(zero
): a module for inserting zero pronouns (subjects, objects and possessors) into dependency parsed sentencesemBERT-NER
(bert-ner
): module that wraps NER model based on huBERTemBERT-baseNP
(bert-basenp
): module that wraps base NP chunker based on huBERT emBERT-NP
(bert-np
, bert-chunk
): module that wraps maximal NP chunker based on huBERT emIOBUtils-NP
(fix-np
, fix-chunk
): a module for converting among IOB representations and fixing invalid label sequences the present oneemIOBUtils-NER
(fix-ner
, fix-ner
): a module for converting among IOB representations and fixing invalid label sequences the present oneemGATEConv
(gate-conv
): a module for converting the output TSV format to GATE XML. The purpose of the module is to help the transition of http://e-magyar.hu form GATE to emtsv, therefore only the minimal required featureset is implementedemStanza-tok
(emstanza-tok
, stanza-tok
): The Stanza tokeniseremStanza-pos
(emstanza-pos
, stanza-pos
): The Stanza POS tagger (no lemmatisation)emStanza-lem
(emstanza-lem
, stanza-lem
): The Stanza POS tagger including lemmatisationemStanza-parse
(emstanza-parse
, stanza-parse
, emStanza-dep
, emstanza-dep
, stanza-dep
): The Stanza dependency parseremStanza-tok-lem
(emstanza-tok-lem
, stanza-tok-lem
): The Stanza tokeniser, POS tagger and lemmatiser as a wholeemStanza-tok-parse
(emstanza-tok-parse
, stanza-tok-parse
, emStanza-tok-dep
, emstanza-tok-dep
, stanza-tok-dep
): The Stanza tokenizer, POS tagger, lemmatiser and dependency parser as a wholeemPhon-IPA-comments
(emphon-ipa-comments
, emPhon-ipa-comments
): The emPhon phonetic transcriber with IPAization and with comment linesemPhon-IPA-nocomments
(emphon-ipa-nocomments
, emPhon-ipa-nocomments
): The emPhon phonetic transcriber with IPAization but without comment linesemPhon-noIPA-comments
(emphon-noipa-comments
, emPhon-noipa-comments
): The emPhon phonetic transcriber without IPAization but with comment linesemPhon-noIPA-nocomments
(emphon-noipa-nocomments
, emPhon-noipa-nocomments
): The emPhon phonetic transcriber without IPAization and comment linesemPreverb
(preverb
): module to connect a preverb to the verb or verb-derivative token to which it belong.emCompound
(compound
): module to annotate compound boundaries.For an overview see the topology of the current toolchain
The following presets are defined as shorthands for the common tasks:
analyze
: Run the full pipeline, same as: emToken,emMorph,emTag,emChunk,emNER,emmorph2ud,emDep-ud,emCons
tok-morph
: From tokenisation to morphological analysis, same as emToken,emMorph
tok-pos
: From tokenisation to POS-tagging, same as emToken,emMorph,emTag
tok-chunk
: From tokenisation to maximal NP-chunking, same as emToken,emMorph,emTag,emChunk
tok-ner
: From tokenisation to named-entity recognition, same as emToken,emMorph,emTag,emNER
tok-udpos
: From tokenisation to POS-tagging in UD format, same as emToken,emMorph,emTag,emmorph2ud
tok-dep
: From tokenisation to dependency parsing, same as emToken,emMorph,emTag,emmorph2ud,emDep-ud
tok-bert-ner
: Raw text to emBERT named-entity annotation, same as emToken,emBERT-NER
tok-bert-chunk
: Raw text to emBERT maximal NP chunking, same as emToken,emBERT-NP
The examples presented above simply call main.py
with the parameters tok,spell,morph,pos,conv-morph,dep,chunk,ner
take the input on STDIN and return the output on STDOUT.
We use here a tokenizer, a morphological analyzer, a POS tagger, a morphology converter, a dependency parser, a chunker and a named entity recognizer.
(The converter is needed as the POS tagger and the dependency parser work with different morphological coding systems.)
xtsv
emtsv