quanshengwu / wannier_tools

WannierTools: An open-source software package for novel topological materials. Full documentation:
http://www.wanniertools.org
GNU General Public License v3.0
249 stars 144 forks source link
band-unfolding condensed-matter dirac-semimetal landau-level magnetoersistance nodal-line physics surface-state tight-binding topological-insulator topological-materials topological-numbers topological-surface-states wannier-charge-center wannier90 weyl-semimetal wilson-loop

WannierTools Build Status codecov

wanniertools-logo

The homepage of the WannierTools code is https://www.wanniertools.org

Full documentation of WannierTools is on website http://www.wanniertools.com

QQ group number : 709225749

Authors and contributors

WannierTools was initialized by QuanSheng Wu (IOP CAS) and Shengnan Zhang (IOP CAS) at IOP CAS Beijing in 2012. Now, it's an open-source software, there are serveral contributors including

Pull down the package

The developing branch can be fetched by

git clone https://github.com/quanshengwu/wannier_tools.git

The stable branch can be downloaded in

https://github.com/quanshengwu/wannier_tools/releases

Brief introductions

We present an open-source software package WannierTools, a software for investigation of novel topological materials. This code works in the tight-binding framework, which can be generated by another software package Wannier90. It can help to classify the topological phase of a given materials by calculating the Wilson loop, and can get the surface state spectrum which is detected by angle resolved photoemission (ARPES) and in scanning tunneling microscopy (STM) experiments . It also identifies positions of Weyl/Dirac points and nodal line structures, calculates the Berry phase around a closed momentum loop and Berry curvature in a part of the Brillouin zone(BZ). Besides, WannierTools also can calculate ordinary magnetoresistance for non-magnetic metal and semimetal using Boltzmann transport theory, calculate Landau level spectrum with given magnetic field direction and strength, and get unfolded energy spectrum from a supercell calculation.

License and Citation

WannierTools was released under GPL V3. If you use our code for your research, please cite it properly, like “ The surface spectrums or Berry curvature, Wilson loop, Weyl/Dirac points, Nodal line, Chirality et al. are calculated by the software package WannierTools~\cite{Wu2018}. "

Please use WannierTools instead of "wannier_tools" , "wannier-tools" or WannierTool" when you cite our software.

For the surface state calculation, please also cite {Sancho1985}.

For the Wilson loop calculation, please also cite PhysRevB.84.075119 and PhysRevB.83.035108.

For magnetoresistance calculation, please also cite Magnetoresistance from Fermi surface topology, ShengNan Zhang, QuanSheng Wu, Yi Liu, and Oleg V. Yazyev, Phys. Rev. B 99, 035142 (2019)

For non-magnetic symmetrization processing, please cite "wannhr_symm: A tool for symmetrization of non-magnetic WannierTB, https://github.com/quanshengwu/wannier\_tools/tree/master/utility/wannhr_symm/, Changming Yue".

For magnetic symmetrization processing, please cite "wannhr_symm_Mag: A tool for symmetrization of magnetic WannierTB, https://github.com/quanshengwu/wannier\_tools/tree/master/utility/wannhr_symm_Mag, Changming Yue".

For phonon system calculation, please cite "PhononTB: a tool to construct tight-binding model for phonon systems, https://github.com/quanshengwu/wannier\_tools/tree/master/utility/phonopyTB, Changming Yue".

Reference

@article{WU2018,
title = "WannierTools : An open-source software package for novel topological materials",
journal = "Computer Physics Communications",
volume = "224",
pages = "405 - 416",
year = "2018",
doi = "https://doi.org/10.1016/j.cpc.2017.09.033",
url = "http://www.sciencedirect.com/science/article/pii/S0010465517303442",
issn = "0010-4655",
preprint = "arXiv:1703.07789",
author = "QuanSheng Wu and ShengNan Zhang and Hai-Feng Song and Matthias Troyer and Alexey A. Soluyanov",
keywords = "Novel topological materials, Topological number, Surface state, Tight-binding model"
}

Sancho1985: Highly convergent schemes for the calculation of bulk and surface Green functions, M P Lopez Sancho, J M Lopez Sancho, J M L Sancho and J Rubio, J.Phys.F.Met.Phys.15(1985)851-858

Citations

Full list of citations from the ADS Databases