smallpondtom / UniqueKronecker.jl

Unique Kronecker product operation implemented in Julia!
https://smallpondtom.github.io/UniqueKronecker.jl/
MIT License
1 stars 0 forks source link
julia math

UniqueKronecker.jl

logo
[![Powered by ACE Lab](https://img.shields.io/badge/powered%20by-ACE%20Lab-pink)](https://sites.google.com/view/elizabeth-qian/research/ace-group) [![CI](https://github.com/smallpondtom/UniqueKronecker.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/smallpondtom/UniqueKronecker.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/smallpondtom/UniqueKronecker.jl/graph/badge.svg?token=30U7MIN4RM)](https://codecov.io/gh/smallpondtom/UniqueKronecker.jl) [![Doc](https://img.shields.io/badge/docs-stable-blue.svg)](https://smallpondtom.github.io/UniqueKronecker.jl/stable) [![Doc](https://img.shields.io/badge/docs-dev-green.svg)](https://smallpondtom.github.io/UniqueKronecker.jl/dev) [![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)

Overview

UniqueKronecker.jl is a Julia package for computing non-redundant (unique) Kronecker products of vectors, generalizing to n dimensions and k-repeated products. It provides utility functions to work with the associated coefficient matrices, enabling conversions between unique Kronecker products and their standard (possibly redundant) Kronecker counterparts.

What is the Unique Kronecker Product?

The standard Kronecker product of a vector $\mathsf{\mathbf{x}} \in \mathbb{R}^n$ with itself, $\text{kron}(\mathbf{x}, \mathbf{x}) = \mathbf{x} \otimes \mathbf{x}$, produces all possible pairwise products of its elements, resulting in redundant terms when $x_i x_j = x_j x_i$.

The unique Kronecker product, denoted here as $\text{uniquekron}(\mathbf{x},\mathbf{x}) = \mathbf{x} \oslash \mathbf{x}$, eliminates these redundancies by considering only unique combinations of indices. For example:

For $\mathbf{x} \in \mathbb{R}^2$:

$$ \mathbf{x} \otimes \mathbf{x} = \begin{bmatrix} x_1^2 \ x_1 x_2 \ x_2 x_1 \ x_2^2 \end{bmatrix} $$

$$ \mathbf{x} \oslash \mathbf{x} = \begin{bmatrix} x_1^2 \ x_1 x_2 \ x_2^2 \end{bmatrix} $$

Here, $x_1 x_2$ and $x_2 x_1$ are considered the same and included only once.

Coefficient Matrices

The package provides functions to compute the associated coefficient matrices. For example, in a second-order Kronecker product (or quadratic polynomial) case:

These matrices are useful for applications in polynomial regression, symmetric tensor computations, and vectorization of symmetric matrices.

Features

Installation

You can install it using the command

using Pkg
Pkg.add("UniqueKronecker")
using UniqueKronecker

or install it directly from GitHub:

using Pkg
Pkg.add(url="https://github.com/YourUsername/UniqueKronecker.jl")

Replace YourUsername with the actual GitHub username or organization where the package is hosted.

Usage

Importing the Package

using UniqueKronecker

Computing the Unique Kronecker Product

Compute the $k$-th order unique Kronecker product of vector x:

x = [2.0, 3.0, 4.0]  # Example vector in ℝ³

x_unique_kron =  x ⊘ x 
println(x_unique_kron)
# Output: [4.0, 6.0, 8.0, 9.0, 12.0, 16.0]
# Corresponding to [x₁², x₁x₂, x₁x₃, x₂², x₂x₃, x₃²]

Computing Coefficient Matrices

Polynomial Matrix $\mathbf{A}_2$

Compute the polynomial coefficient matrix $\mathbf{A}_2$:

n = 3
A2 = zeros(n,n^2)
for i in 1:n
    x = rand(n)
    A2[i,:] = kron(x,x)
end

println(A2)
# Output: A matrix of size (3, 9) for this example

Unique/Nonredundant Polynomial Coefficient Matrix $A_{2u}$

Convert the polynomial matrix $A2$ into the unique polynomial coefficient matrix $A{2u}$:

A2u = eliminate(A2, 2)

println(A2u)
# Output: A matrix of size (3, 6) for this example

This can be converted back

A2 = duplicate(A2u, 2)
println(A2)
# Output: the A2 matrix

To make the coefficients symmetric for redundant terms use duplicate_symmetric

A2s = duplicate_symmetric(A2u, 2)
println(A2s)
# Output: the A2 matrix with symmetric coefficients

Relationship Between Matrices

The following relationship holds:

$$ \mathbf{A}_{2u} \cdot (\mathbf{x} \oslash \mathbf{x}) = \mathbf{A}_2 \cdot (\mathbf{x} \otimes \mathbf{x}) $$

This allows mapping between the unique Kronecker product space and the standard Kronecker product space.

Generalizing to Higher-Order Products

Compute higher-order unique Kronecker products by specifying a higher value of $k$:

k = 3  # Third-order product

x_unique_kron_k3 = unique_kronecker(x, k)  # or ⊘(x,k)

println(x_unique_kron_k3)
# Output: Corresponding unique products of order 3

Applications

Contributing

Contributions are welcome! If you find a bug or have a feature request, please open an issue. If you'd like to contribute code, feel free to submit a pull request.

License

This project is licensed under the MIT License.