symengine / SymEngine.jl

Julia wrappers of SymEngine
MIT License
192 stars 43 forks source link
computer-algebra julia math

SymEngine.jl

Build Status Build status Codecov Coveralls

Julia Wrappers for SymEngine, a fast symbolic manipulation library, written in C++.

Installation

You can install SymEngine.jl by giving the following command.

julia> Pkg.add("SymEngine")

Quick Start

Working with scalar variables

Defining variables

One can define variables in a few ways. The following three examples are equivalent.

Defining two symbolic variables with the names a and b, and assigning them to julia variables with the same name.

julia> a=symbols(:a); b=symbols(:b)
b

julia> a,b = symbols("a b")
(a, b)

julia> @vars a b
(a, b)

Simple expressions

We are going to define an expression using the variables from earlier:

julia> ex1 = a + 2(b+2)^2 + 2a + 3(a+1)
3*a + 3*(1 + a) + 2*(2 + b)^2

One can see that values are grouped, but no expansion is done.

Working with vector and matrix variables

Defining vectors of variables

A vector of variables can be defined using list comprehension and string interpolation.

julia> [symbols("α_$i") for i in 1:3]
3-element Array{SymEngine.Basic,1}:
 α_1
 α_2
 α_3

Defining matrices of variables

Some times one might want to define a matrix of variables. One can use a matrix comprehension, and string interpolation to create a matrix of variables.

julia> W = [symbols("W_$i$j") for i in 1:3, j in 1:4]
3×4 Array{Basic,2}:
 W_11  W_12  W_13  W_14
 W_21  W_22  W_23  W_24
 W_31  W_32  W_33  W_34

Matrix-vector multiplication

Now using the matrix we can perform matrix operations:

julia> W*[1.0, 2.0, 3.0, 4.0]
3-element Array{Basic,1}:
 1.0*W_11 + 2.0*W_12 + 3.0*W_13 + 4.0*W_14
 1.0*W_21 + 2.0*W_22 + 3.0*W_23 + 4.0*W_24
 1.0*W_31 + 2.0*W_32 + 3.0*W_33 + 4.0*W_34

Operations

expand

julia> expand(a + 2(b+2)^2 + 2a + 3(a+1))
11 + 6*a + 8*b + 2*b^2

subs

Performs substitution.

julia> subs(a^2+(b-2)^2, b=>a)
a^2 + (-2 + a)^2

julia> subs(a^2+(b-2)^2, b=>2)
a^2

julia> subs(a^2+(b-2)^2, a=>2)
4 + (-2 + b)^2

julia> subs(a^2+(b-2)^2, a^2=>2)
2 + (-2 + b)^2

julia> subs(a^2+(b-2)^2, a=>2, b=>3)
5

diff

Peforms differentiation

julia> diff(a + 2(b+2)^2 + 2a + 3(a+1), b)
4*(2 + b)

License

SymEngine.jl is licensed under MIT open source license.