MTWAS is an R package for the paper
Song, S., Wang, L., Hou, L., & Liu, J. S. (2024). Partitioning and aggregating cross-tissue and tissue-specific genetic effects to identify gene-trait associations. Nature Communications, 15(1), 5769. https://doi.org/10.1038/s41467-024-49924-4
:bulb: We provide pre-trained eQTL weights with MTWAS on 47 GTEx version 8 tissues, 13 types of immune cells and 2 activation conditions of the DICE dataset, and 14 immune cell types from the single-cell RNA-seq OneK1K dataset.
:smiley: You could either run MTWAS with the pre-trained weights (:star:easy and recommended), or train your own models with the expression data!
The software is developed and tested in Linux and Windows environments.
devtools::install_github("szcf-weiya/MTWAS")
Please prepare the GWAS summary statistics in the following format (including the header line):
chr rsid ref alt z
1 rs4040617 G A -0.199
1 rs4075116 C T 0.646
1 rs9442385 T G -0.016
...
chr: chromosome
rsid: SNP rsid
ref: reference allele
alt: alternative allele
z: GWAS z score
wget -O gtex_v8_mtwas_eqtls.tar.gz https://cloud.tsinghua.edu.cn/f/5633911d7c39431b8be8/?dl=1 --no-check-certificate
tar -zxvf gtex_v8_mtwas_eqtls.tar.gz
If you are working on UKBB phenotypes, please download from the following weights instead (We restricted eQTLs within UKBB SNPs):
wget -O gtex_v8_mtwas_eqtls.tar.gz https://cloud.tsinghua.edu.cn/f/4d2186f782024ace80f5/?dl=1 --no-check-certificate
tar -zxvf gtex_v8_mtwas_eqtls.tar.gz
The result table for UKBB phenotypes (including 84 self-reported cancer and non-cancer illness phenotypes with effective sample sizes larger than 5,000) can also be directly downloaded from the supplementary files of the paper.
We use chromosome 22 on whole blood as an example. The list of tissues is detailed in ct_use.RData
.
library(MTWAS)
data("summary_stats") ## EXAMPLE GWAS summary stats (could be specified by users, format: a data.frame with colnames: chr, rsid, a1, a2, z)
chr = 22
cell_type = 'Whole_Blood'
### remember to change the path to the downloaded folder!!!
## load twas bim files (downloaded)
load(paste0('./gtex_v8_mtwas_eqtls/twas_bim_chr', chr, '.RData'))
## load twas eqtl files (downloaded)
load(paste0('./gtex_v8_mtwas_eqtls/', cell_type, '/twas_eqtl_chr', chr, '.RData'))
## Run mtwas and derive the gene-trait association test statistics
results = run_mtwas_easy(summary_stats, twas_bim, twas_eqtl, pred_res)
head(results)
The output results
is a data.frame with the following format:
gene MTWAS_Z MTWAS_P pred_r2 pred_pv
PLA2G3 -1.87 0.062 0.01 0.02
PANX2 -1.83 0.066 0.01 0.08
...
gene: gene name
MTWAS_Z: gene-trait association Z score derived by MTWAS
MTWAS_P: gene-trait association P value derived by MTWAS
pred_r2: prediction accuracy of the gene expression evaluated by $r^2$
pred_pv: prediction accuracy of the gene expression evaluated by an F-test
Note that we output results of all genes. Users could specify the criteria of the outputs, e.g.,results[results$pred_pv < 0.05 & results$MTWAS_P < 5e-6, ]
.
wget -O dice_mtwas_eqtls.tar.gz https://cloud.tsinghua.edu.cn/f/c51dcb6a7bbb417b80be/?dl=1 --no-check-certificate
tar -zxvf dice_mtwas_eqtls.tar.gz
We use chromosome 22 on B naive cell line as an example. The list of cell types is detailed in ct_use.RData
(remember to change the path to the downloaded folder).
library(MTWAS)
data("summary_stats") ## EXAMPLE GWAS summary stats (could be specified by users, format: a data.frame with colnames: chr, rsid, a1, a2, z)
chr = 22
cell_type = 'B_NAIVE'
### remember to change the path to the downloaded folder!!!
## load twas bim files (downloaded)
load(paste0('./dice_mtwas_eqtls/twas_bim_chr', chr, '.RData'))
## load twas eqtl files (downloaded)
load(paste0('./dice_mtwas_eqtls/', cell_type, '/twas_eqtl_chr', chr, '.RData'))
## Run mtwas and derive the gene-trait association test statistics
results = run_mtwas_easy(summary_stats, twas_bim, twas_eqtl, pred_res)
head(results)
The output results
is a data.frame with the following format:
gene MTWAS_Z MTWAS_P pred_r2 pred_pv
ENSG00000232754 3.08 0.002 0.04 0.99
ENSG00000100225 2.46 0.014 0.07 0.01
...
gene: gene name
MTWAS_Z: gene-trait association Z score derived by MTWAS
MTWAS_P: gene-trait association P value derived by MTWAS
pred_r2: prediction accuracy of the gene expression evaluated by $r^2$
pred_pv: prediction accuracy of the gene expression evaluated by an F-test
Note that we output results of all genes. Users could specify the criteria of the outputs, e.g.,results[results$pred_pv < 0.05 & results$MTWAS_P < 5e-6, ]
.
wget -O onek1k_mtwas_eqtls.tar.gz https://cloud.tsinghua.edu.cn/f/de07d968dfb94897b814/?dl=1 --no-check-certificate
tar -zxvf onek1k_mtwas_eqtls.tar.gz
We use chromosome 22 on CD4 NC cell line as an example. The list of cell types is detailed in ct_use.RData
(remember to change the path to the downloaded folder).
library(MTWAS)
data("summary_stats") ## EXAMPLE GWAS summary stats (could be specified by users, format: a data.frame with colnames: chr, rsid, a1, a2, z)
chr = 22
cell_type = 'CD4_NC'
### remember to change the path to the downloaded folder!!!
## load twas bim files (downloaded)
load(paste0('./onek1k_mtwas_eqtls/twas_bim_chr', chr, '.RData'))
## load twas eqtl files (downloaded)
load(paste0('./onek1k_mtwas_eqtls/', cell_type, '/twas_eqtl_chr', chr, '.RData'))
## Run mtwas and derive the gene-trait association test statistics
results = run_mtwas_easy(summary_stats, twas_bim, twas_eqtl, pred_res)
head(results)
The output results
is a data.frame with the following format:
gene MTWAS_Z MTWAS_P pred_r2 pred_pv
APOL6 1.80 0.072 0.001 0.65
RP6-109B7.3 -1.77 0.076 0.038 7.4e-09
...
gene: gene name
MTWAS_Z: gene-trait association Z score derived by MTWAS
MTWAS_P: gene-trait association P value derived by MTWAS
pred_r2: prediction accuracy of the gene expression evaluated by $r^2$
pred_pv: prediction accuracy of the gene expression evaluated by an F-test
Note that we output results of all genes. Users could specify the criteria of the outputs, e.g.,results[results$pred_pv < 0.05 & results$MTWAS_P < 5e-6, ]
.
We also provide functions to train MTWAS with your own datasets!
In order to derive your own MTWAS weights, three types of data are necessary. There is a demo dataset built in our R package:
library(MTWAS)
data('demo')
# demo$dat
# demo$E.info
# demo$E
Format: a list of plink bfiles, including bim, fam, bed
One could use the R function read_plink
in package EBPRS
to read the plink files:
library(EBPRS)
dat <- read_plink('PATH_TO_PLINK_BFILE')
Genes that we are interested in to derive the gene-trait associations.
Format: a data.frame in the following format (including the header line):
chr start end gene
22 15528192 15529139 OR11H1
22 15690026 15721631 POTEH
...
A list including all the gene expression data, the length of the list is the number of tissues. Each element is a sample*gene matrix.
Each matrix should have rownames (overlapped with dat$fam$V2
), and colnames (overlapped with E.info$gene
)
The orders of the columns and rows of the matrices are not necessary to be the same. The matrices can have NAs.
:exclamation: Please NOTE that the position of dat$bim$V4
and E.info
should be the same build (e.g., both are hg19, or hg38, or etc.)
library(MTWAS)
data('demo')
### substitute the input with your own dataset
twas_dat <- format_twas_dat(E=demo$E, E.info=demo$E.info, dat=demo$dat)
names(twas_dat)
# load TWAS data
# select cross-tissue eQTLs
ct.eQTL = select.ct.eQTL(twas_dat, verbose = F, ncores = 1)
# select tissue-specific eQTLs
list.eQTL = select.ts.eQTL(twas_dat, ct.eQTL = ct.eQTL, ncores = 1)
gene_name = 'IL17RA' ## gene name
gene_index = which(names(ct.eQTL)==gene_name)
## ct-eQTLs for gene IL17RA
print(list.eQTL[[1]][[gene_index]]$`common.snp`)
gene_name = 'CCT8L2' ## gene name
gene_index = which(names(ct.eQTL)==gene_name)
tissue_index = 1 ## tissue specific
## ts-eQTLs for gene CCT8L2 on tissue 1
print(list.eQTL[[tissue_index]][[gene_index]]$`single.snp`)
# load GWAS summary statistics (data.frame, colnames: rsid, a1, a2, chr, z)
data("summary_stats")
# association test
twas.single.trait(summary_stats, twas_dat, list.eQTL)
The details of output and data formats can be found in the auto-generated vignette: https://hohoweiya.xyz/MTWAS/articles/mtwas.html
MTWAS software
Song, S., Wang, L., Hou, L., & Liu, J. S. (2024). Partitioning and aggregating cross-tissue and tissue-specific genetic effects to identify gene-trait associations. Nature Communications, 15(1), 5769. https://doi.org/10.1038/s41467-024-49924-4
The GTEx dataset
The DICE dataset
Schmiedel, Benjamin J., et al. "Impact of genetic polymorphisms on human immune cell gene expression." Cell 175.6 (2018): 1701-1715.
The OneK1K dataset
Yazar, Seyhan, et al. "Single-cell eQTL mapping identifies cell type–specific genetic control of autoimmune disease." Science 376.6589 (2022): eabf3041.