COVID-19 Detection from Chest X-Ray Images
Domain : Computer Vision, Machine Learning
Sub-Domain : Deep Learning, Image Recognition
Techniques : Deep Convolutional Neural Network, ImageNet, Inception
Application : Image Recognition, Image Classification, Medical Imaging
Description
1. Detecção de COVID-19 a partir de imagens de raios X de tórax utlizando uma Deep Convolutional Neural Network otimizada.
Code
GitHub Link : COVID-19 Detection from Chest X-Ray Images
Linkedin : Antonio Esteves
Datasets
Dataset Name : Chest X-Ray Images (Pneumonia)
Dataset Link : Chest X-Ray Images (Pneumonia) Dataset (Kaggle)
: Chest X-Ray Images (Pneumonia) Dataset (Original Dataset - No Labeled)
Dataset Name : COVID-19 image data collection
Dataset Link : COVID-19 image data collection (Original Dataset)
Detalhes do Dataset
Nome do Dataset : Imagens de raio X de toráx (COVID-19)
Número de Classes : 2
Número/Tamanho das imagens : Total : 178 (98.8 Megabyte (MB))
Treino : 76 (51.7 Megabyte (MB))
Validação : 30 (9.1 Megabyte (MB))
Teste : 72 (38.4 Megabyte (MB))
Parâmetros do Modelo
Machine Learning Library : Keras
Base Model : Custom Deep Convolutional Neural Network
Otimizadores : Adam
Função de Perda : categorical_crossentropy
Deep Convolutional Neural Network Otimizada:
Parâmetros de Treino
Batch Size : 64
Número of Épocas : 100
Tempo de Treino : 40 Minutes
Saída (Prediction/ Recognition / Classification Metrics)
Teste
F1-Score : 84.79%
Accuracy : 83.33%
Loss : 0.07
Precision : 82%
Recall (COVID-19) : 86.11% (Para as classes positivas)
Specificity : 80.56%
Sample Output:
See More Images
Confusion Matrix:
ROC Curve:
Tools / Libraries
Languages : Python
Libraries : Keras, TensorFlow, Inception, ImageNet
Dates
Duration : March 2020 - Current
Current Version : v1.0.0.0
Last Update : 23.03.2020