ucns3d-team / UCNS3D

Unstructured Compressible Navier Stokes 3D code (UCNS3D)
https://ucns3d.com
GNU General Public License v3.0
256 stars 92 forks source link
cfd compressible-flows compressible-fluid-dynamics computational-fluid-dynamics simulation unstructured-meshes

UCNS3D: The Open-Source High-Order Finite-Volume CFD Solver

Overview

This repository contains the source code ucns3d Computational Fluid Dynamics (CFD) solver and instructions on how to use it with representative examples.

UCNS3D is an open-source computational solver for compressible flows on unstructured meshes. State-of-the-art high-order methods are are available in a versatile 2D and 3D unstructured CFD framework for a wide-range of compressible flow problems.

The 2022 "whitepaper" contains a detail overview of the methods, capabilities and application of the solver.

Overview

The ucns3d solver is portable to Linux operating systems and MacOS (Catalina or newer) as well as on Windows 10 using Windows Subsystem for Linux (WLS-2). The parallel CFD code employing MPI+OpenMP for distributed memory machines.

ucns3d can deal with triangular, quadrilateral,tetrahedral,pyramidal, prismatic, and hexahedral elements.

Install

There are two main methods to locally install the solver and run the solver.

Docker

  1. Install Docker Desktop on any operating system you are working. For Windows 10 or 11 you would need WSL ideally WSL2 installed, follow Microsoft's instructions.

  2. In your bash terminal build the ucns3d image, you would need invoke docker build from the repository root directory:

docker build . -t ucns3d -f Dockerfile
  1. Once the image is build run the image, you can run the image interactively like so:
docker run -ti ucns3d

The current Dockerfile contains an example case under tests. Alternatively, you can mount a tmp directory and copy other uses cases when you run the image like so:

docker run -v $PWD/tmp/:/tmp/ -ti ucns3d

Manual Build

The source code is written in Fortran and can be compiled in various environment. The following OS options are available.

Build

The source code requires compilation and linking both static and dynamic libraries. The source code can be compiled with the following compilers.

Compilation Dependencies

The solver makes use of BLAS libraries that are required for the compilation and running of the solver.

The mesh is partitioned using metis software.

Running

For running ucns3d you will need the following files in a directory of your choice:

Visualisation of outputs

The solver outputs to different formats enable post-processing and visualisation through the folowing software

Examples

Representative tests can be downloaded from

tests1

tests2

and a detailed description is provided in the file TESTS.md

License

The ucns3d solver is distributed under the GNU General Public Licence v3 See the LICENSE file for details.

Support

Please get in touch and let us know how we can make this project better ucns3d@gmail.com