yozik04 / nibe

Library for communication with Nibe heatpumps.
GNU General Public License v3.0
47 stars 36 forks source link
api heatpump library modbus nibe rs485

Test and Lint PyPI - Status PyPI - Downloads PyPI PyPI - License Codecov

Nibe library

Library for communication with Nibe heatpumps.

Supported heatpump models

Connection methods

NibeGW

For this connection method to work you will need to connect an Arduino with special firmware that will act as a proxy between Heatpump RS485 and this library. Some details regarding how this method works can be found here.

NibeGW firmware for Arduino or RPi can be download here.

Ports are configurable

import asyncio
import logging

from nibe.coil import CoilData
from nibe.connection.nibegw import NibeGW
from nibe.heatpump import HeatPump, Model

logger = logging.getLogger("nibe").getChild(__name__)

def on_coil_update(coil_data: CoilData):
    logger.debug(coil_data)

async def main():
    heatpump = HeatPump(Model.F1255)
    # heatpump.word_swap = False  # uncomment if you have word swap disabled in 5.3.11 service menu
    await heatpump.initialize()

    heatpump.subscribe(HeatPump.COIL_UPDATE_EVENT, on_coil_update)

    connection = NibeGW(heatpump=heatpump, remote_ip="192.168.1.2")
    await connection.start()

if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG)

    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
    loop.run_forever()

TCP Modbus

With S series heatpumps

import asyncio
import logging

from nibe.coil import CoilData
from nibe.connection.modbus import Modbus
from nibe.heatpump import HeatPump, Model

logger = logging.getLogger("nibe").getChild(__name__)

def on_coil_update(coil_data: CoilData):
    logger.debug(f"on_coil_update: {coil_data}")

async def main():
    heatpump = HeatPump(Model.F1255)
    # heatpump.word_swap = False  # uncomment if you have word swap disabled in 5.3.11 service menu
    await heatpump.initialize()

    heatpump.subscribe(HeatPump.COIL_UPDATE_EVENT, on_coil_update)

    connection = Modbus(heatpump=heatpump, url="tcp://192.168.1.2:502", slave_id=1)

    coil = heatpump.get_coil_by_name('bt50-room-temp-s1-40033')
    coil_data = await connection.read_coil(coil)

    logger.debug(f"main: {coil_data}")

if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG)

    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
    loop.run_forever()

Serial Modbus

With NIBE MODBUS 40

import asyncio
import logging

from nibe.coil import CoilData
from nibe.connection.modbus import Modbus
from nibe.heatpump import HeatPump, Model

logger = logging.getLogger("nibe").getChild(__name__)

def on_coil_update(coil_data: CoilData):
    logger.debug(f"on_coil_update: {coil_data}")

async def main():
    heatpump = HeatPump(Model.F1255)
    # heatpump.word_swap = False  # uncomment if you have word swap disabled in 5.3.11 service menu
    await heatpump.initialize()

    heatpump.subscribe(HeatPump.COIL_UPDATE_EVENT, on_coil_update)

    connection = Modbus(heatpump=heatpump, url="serial:///dev/ttyS0", slave_id=1, conn_options={"baudrate": 9600})

    coil = heatpump.get_coil_by_name('bt50-room-temp-s1-40033')
    coil_data = await connection.read_coil(coil)

    logger.debug(f"main: {coil_data}")

if __name__ == '__main__':
    logging.basicConfig(level=logging.DEBUG)

    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())
    loop.run_forever()

Model auto detection

With NibeGW it is possible to auto identify heatpump model. Heatpump sends information about model every 15 seconds.

heatpump = HeatPump()  # Note that we do not specify model here

# ...

connection = NibeGW(heatpump=heatpump, remote_ip="192.168.1.2")
await connection.start()
heatpump.product_info = await connection.read_product_info()
await heatpump.initialize()

Disclaimer

Nibe is registered mark of NIBE Energy Systems.

The code was developed as a way of integrating personally owned Nibe heatpump, and it cannot be used for other purposes. It is not affiliated with any company, and it doesn't have commercial intent.

The code is provided AS IS and the developers will not be held responsible for failures in the heatpump operation or any other malfunction.

HOWTOs for developers

How to capture and replay traffic from NibeGW

Requirements

APT:

On recipient device run:

sudo tcpdump -i eth0 udp port 9999 -w nibe-9999.pcap

tcprewrite --infile=nibe-9999.pcap --outfile=nibe-9999rw.pcap --dstipmap=192.168.1.3:192.168.1.2 --enet-dmac=CC:CC:CC:CC:CC:CC --fixcsum

sudo tcpreplay --intf1=eth0 nibe-9999rw.pcap

You will need to replace IP addresses for rewrite and Mac address of new recipient device

I want to add/update registers in the library

To add/edit registers in the library first of all you need to find documentation how these parameters are officially called. There will be a backward compatibility break if a name will change.

The process contains of mainly next steps: 1. Update source CSV files. 2. Convert CSV files to JSON. 3. Edit extensions.json if needed. 4. Submit PR.

1.A For F series pumps

Use ModbusManager. Do CSV export for the unit you want to update. Find the correct file in nibe/data folder. Merge data into that file (Do not change/update any lines. All CSV files are source files they must not be changed).

1.B For S serires pumps

Change your pump language to English and do registers export. Merge that data into the correct file in nibe/data folder (Do not change/update any lines. All CSV files are source files they must not be changed).

2. Convert source CSV files to JSON

python3 -m nibe.console_scripts.convert_csv

3. Verify JSON files

Verify that convertion was succesful and required lines correctly appeared in the json files. If some modifications are required you need to edit extensions.json to fix these. Do not edit source CSV files.

4. Submit PR

Attach your source CSV file for reference so we could verify as well.