Implementation of Reinforcement Learning Algorithms in Python
Implementation of selected reinforcement learning algorithms with tensorflow.
Implemented Algorithms
(Click into the links for more details)
Advanced
Policy Gradient Methods
Temporal Difference Learning
Monte Carlo Methods
Dynamic Programming MDP Solver
Environments
envs/gridworld.py
: minimium gridworld implementation for testings
Dependencies
- Python 2.7
- Numpy
- Tensorflow 0.12.1
- OpenAI Gym (with Atari) 0.8.0
- matplotlib (optional)
Tests
- Files:
test_*.py
- Run unit test for [class]:
python test_[class].py
MIT License