zqfang / GSEApy

Gene Set Enrichment Analysis in Python
http://gseapy.rtfd.io/
BSD 3-Clause "New" or "Revised" License
560 stars 117 forks source link
enrichment-analysis gsea python3 rust

GSEApy

GSEApy: Gene Set Enrichment Analysis in Python.

.. image:: https://badge.fury.io/py/gseapy.svg :target: https://badge.fury.io/py/gseapy

.. image:: https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic :target: http://bioconda.github.io

.. image:: https://anaconda.org/bioconda/gseapy/badges/downloads.svg
:target: https://anaconda.org/bioconda/gseapy

.. image:: https://github.com/zqfang/GSEApy/workflows/GSEApy/badge.svg?branch=master :target: https://github.com/zqfang/GSEApy/actions :alt: Action Status

.. image:: http://readthedocs.org/projects/gseapy/badge/?version=master :target: http://gseapy.readthedocs.io/en/master/?badge=master :alt: Documentation Status

.. image:: https://img.shields.io/badge/license-MIT-blue.svg :target: https://img.shields.io/badge/license-MIT-blue.svg

.. image:: https://img.shields.io/pypi/pyversions/gseapy.svg :alt: PyPI - Python Version

Release notes : https://github.com/zqfang/GSEApy/releases

Tutorial for scRNA-seq datasets <https://gseapy.readthedocs.io/en/latest/singlecell_example.html#>_

Tutorial for general usage <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>_

Citation

::

Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python, 
Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757

GSEApy is a Python/Rust implementation for GSEA and wrapper for Enrichr.

GSEApy can be used for RNA-seq, ChIP-seq, Microarray data. It can be used for convenient GO enrichment and to produce publication quality figures in python.

GSEApy has 7 sub-commands available: gsea, prerank, ssgsea, gsva, replot enrichr, biomart.

:gsea: The gsea module produces GSEA <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>_ results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format. :prerank: The prerank module produces Prerank tool results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and genesets file in gmt format. prerank module is an API to GSEA pre-rank tools. :ssgsea: The ssgsea module performs single sample GSEA(ssGSEA) analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include GCT file) with expression values and a GMT file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by D. Barbie et al 2009 <http://www.nature.com/nature/journal/v462/n7269/abs/nature08460.html>. :gsva: The gsva module performs GSVA <https://github.com/rcastelo/GSVA> method by Hänzelmann et al <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7>. The input is same to ssgsea. :replot: The replot module reproduce GSEA desktop version results. The only input for GSEApy is the location to GSEA Desktop output results. :enrichr: The enrichr module enable you perform gene set enrichment analysis using Enrichr API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast. :biomart: The biomart module helps you convert gene ids using BioMart API.

Please use 'gseapy COMMAND -h' to see the detail description for each option of each module.

The full GSEA is far too extensive to describe here; see GSEA <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>_ documentation for more information. All files' formats for GSEApy are identical to GSEA desktop version.

Why GSEApy

I would like to use Pandas to explore my data, but I did not find a convenient tool to do gene set enrichment analysis in python. So, here are my reasons:

GSEApy vs GSEA(Broad) output

Using the same data for GSEAPreranked, and GSEApy reproduce similar results.

.. image:: docs/Preank.py.vs.broad.jpg :width: 400

See more output here: Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>_

Installation

| Install gseapy package from bioconda or pip.

.. code:: shell

if you have conda (MacOS_x86-64 and Linux only)

$ conda install -c bioconda gseapy

Windows and MacOS_ARM64(M1/2-Chip)

$ pip install gseapy

| If pip install failed, use

.. code:: shell

you need to install rust first to compile the code

curl https://sh.rustup.rs -sSf | sh -s -- -y

export rust compiler

export PATH="$PATH:$HOME/.cargo/bin"

install

$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy

Dependency

Mandatory


* build
    * Rust: For gseapy > 0.11.0, Rust compiler is needed
    * setuptools-rust
* run
    * Numpy >= 1.13.0
    * Scipy
    * Pandas
    * Matplotlib
    * Requests

Run GSEApy
-----------------

For command line usage:

.. code:: bash

An example to reproduce figures using replot module.

$ gseapy replot -i ./Gsea.reports -o test

An example to run GSEA using gseapy gsea module

$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test

An example to run Prerank using gseapy prerank module

$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test

An example to run ssGSEA using gseapy ssgsea module

$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test

An example to run GSVA using gseapy ssgsea module

$ gseapy gsva -d expression.txt -g gene_sets.gmt -o test

An example to use enrichr api

see details for -g input -> get_library_name

$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test

Run gseapy inside python console:


1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this

.. code:: python

    import gseapy

    # run GSEA.
    gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')

    # run prerank
    gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')

    # run ssGSEA
    gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

    # run GSVA
    gseapy.gsva(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

    # An example to reproduce figures using replot module.
    gseapy.replot(indir='./Gsea.reports', outdir='test')

2. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.

see detail here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_

.. code:: python

    # assign dataframe, and use enrichr library data set 'KEGG_2016'
    expression_dataframe = pd.DataFrame()

    sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like

    # assign gene_sets parameter with enrichr library name or gmt file on your local computer.
    gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')

    # prerank tool
    gene_ranked_dataframe = pd.DataFrame()
    gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')

    # ssGSEA
    gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')

    # gsva
    gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')

3. For ``enrichr`` , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)

.. code:: python

    # assign a list object to enrichr
    gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
         'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']

    gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')

    # or a txt file path.
    gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
                   outdir='test', cutoff=0.05, format='png' )

GSEApy supported gene set libaries :

To see the full list of gseapy supported gene set libraries, please click here: Library <http://amp.pharm.mssm.edu/Enrichr/#stats>_

Or use get_library_name function inside python console.

.. code:: python

#see full list of latest enrichr library names, which will pass to -g parameter:
names = gseapy.get_library_name()

# show top 20 entries.
print(names[:20])

['Genome_Browser_PWMs', 'TRANSFAC_and_JASPAR_PWMs', 'ChEA_2013', 'Drug_Perturbations_from_GEO_2014', 'ENCODE_TF_ChIP-seq_2014', 'BioCarta_2013', 'Reactome_2013', 'WikiPathways_2013', 'Disease_Signatures_from_GEO_up_2014', 'KEGG_2016', 'TF-LOF_Expression_from_GEO', 'TargetScan_microRNA', 'PPI_Hub_Proteins', 'GO_Molecular_Function_2015', 'GeneSigDB', 'Chromosome_Location', 'Human_Gene_Atlas', 'Mouse_Gene_Atlas', 'GO_Cellular_Component_2015', 'GO_Biological_Process_2015', 'Human_Phenotype_Ontology',]

Dev


.. code:: shell

        # test rust extension only 
        cargo test --features=extension-module
        # test whole package
        python setup.py test

Bug Report

If you would like to report any bugs when use gseapy, don't hesitate to create an issue on github here.

To get help of GSEApy

  1. See Frequently Asked Questions <https://gseapy.readthedocs.io/en/latest/faq.html>_

  2. Visit the document site at Examples <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>_

  3. The GSEApy discussion channel: Q&A <https://github.com/zqfang/GSEApy/discussions>_