CielAl / torch-staintools

Pytorch-adaptation of GPU-accelerated StainTool's stain normalization algorithms
https://cielal.github.io/torch-staintools/
MIT License
21 stars 3 forks source link
computational-pathology digital-pathology gpu-acceleration macenko pytorch pytorch-staintools reinhard stain-augmentation stain-normalization stain-separation staintools vahadane

Torch StainTools for Stain Normalization and Augmentation of Histopathological Images

Unit Testing DOI

Installation

pip install git+https://github.com/CielAl/torch-staintools.git

pip install torch-staintools

Documentation

Detail documentation regarding the code base can be found in the GitPages.

Citation

If this toolkit helps you in your publication, please feel free to cite with the following bibtex entry:

@software{zhou_2024_10496083,
  author       = {Zhou, Yufei},
  title        = {CielAl/torch-staintools: V1.0.4 Release},
  month        = jan,
  year         = 2024,
  publisher    = {Zenodo},
  version      = {v1.0.4},
  doi          = {10.5281/zenodo.10496083},
  url          = {https://doi.org/10.5281/zenodo.10496083}
}

Description


Sample Output of Torch-StainTools Normalization

Screenshot

Sample Output of StainTools

Screenshot

Sample Output of Torch-StainTools Augmentation (Repeat 3 times)

Screenshot

Sample Output of StainTools Augmentation (Repeat 3 times)

Screenshot

Benchmark (No Stain Matrices Caching)

Transformation

Method CPU[s] GPU[s] StainTool[s]
Vahadane 119 7.5 20.9
Macenko 5.57 0.479 20.7
Reinhard 0.840 0.024 0.414

Fitting

Method CPU[s] GPU[s] StainTool[s]
Vahadane 132 8.40 19.1
Macenko 6.99 0.064 20.0
Reinhard 0.422 0.011 0.076

Batchified Concentration Computation

Use Cases and Tips

import cv2
import torch
from torchvision.transforms import ToTensor
from torch_staintools.normalizer import NormalizerBuilder
from torch_staintools.augmentor import AugmentorBuilder
import os
seed = 0
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)

# cpu or gpu
device = torch.device("cuda:0")

root_dir = '.'
target = cv2.imread(os.path.join(root_dir, 'test_images/TCGA-33-4547-01Z-00-DX7.'
                                           '91be6f90-d9ab-4345-a3bd-91805d9761b9_8270_5932_0.png'))
# shape: Height (H) x Width (W) x Channel (C, for RGB C=3)
target = cv2.cvtColor(target, cv2.COLOR_BGR2RGB)
norm = cv2.imread(os.path.join(root_dir, 'test_images/TCGA-95-8494-01Z-00-DX1.'
                                         '716299EF-71BB-4095-8F4D-F0C2252CE594_5932_5708_0.png'))
# shape: HWC
norm = cv2.cvtColor(norm, cv2.COLOR_BGR2RGB)

# shape: Batch x Channel x Height x Width (BCHW); in the showcase here batch size is 1 (B=1) - scaled to [0, 1] torch.float32
target_tensor = ToTensor()(target).unsqueeze(0).to(device)

# shape: BCHW - scaled to [0, 1] torch.float32
norm_tensor = ToTensor()(norm).unsqueeze(0).to(device)

# ######## Normalization
# create the normalizer - using vahadane. Alternatively can use 'macenko' or 'reinhard'.
# note this is equivalent to:
# from torch_staintools.normalizer.separation import StainSeparation
# normalizer_vahadane = StainSeparation.build('vahadane', **arguments)

# we use the 'ista' (ISTA algorithm) to get the sparse solution of the factorization: STAIN_MATRIX * Concentration = OD
# alternatively, 'cd' (coordinate descent) and 'ls' (least square from torch.linalg) is available.
# Note that 'ls' does not can be much faster on batches of smaller input, but may fail on GPU for individual large input 
# in terms of width and height, regardless of the batch size due to the issue reported here: https://github.com/pytorch/pytorch/issues/79191 
normalizer_vahadane = NormalizerBuilder.build('vahadane', concentration_method='ista')
# move the normalizer to the device (CPU or GPU)
normalizer_vahadane = normalizer_vahadane.to(device)
# fit. For macenko and vahadane this step will compute the stain matrix and concentration
normalizer_vahadane.fit(target_tensor)
# transform
# BCHW - scaled to [0, 1] torch.float32
output = normalizer_vahadane(norm_tensor)

# ###### Augmentation
# augment by: alpha * concentration + beta, while alpha is uniformly randomly sampled from (1 - sigma_alpha, 1 + sigma_alpha),
# and beta is uniformly randomly sampled from (-sigma_beta, sigma_beta).
augmentor = AugmentorBuilder.build('vahadane',
                                   # fix the random number generator seed for reproducibility.
                                   rng=314159,
                                   # the luminosity threshold to find the tissue region to augment
                                   # if set to None means all pixels are treated as tissue
                                   luminosity_threshold=0.8,
                                   # herein we use 'ista' to compute the concentration
                                   concentration_method='ista',
                                   sigma_alpha=0.2,
                                   sigma_beta=0.2, target_stain_idx=(0, 1),
                                   # this allows to cache the stain matrix if it's too time-consuming to recompute.
                                   # e.g., if using Vahadane algorithm
                                   use_cache=True,
                                   # size limit of cache. -1 means no limit (stain matrix is often small in size, e.g., 2 x 3)
                                   cache_size_limit=-1,
                                   # if specified, the augmentor will load the cached stain matrices from file system.
                                   load_path=None,
                                   )
# move augmentor to the corresponding device
augmentor = augmentor.to(device)

num_augment = 5
# multiple copies of different random augmentation of the same tile may be generated
for _ in range(num_augment):
    # B x C x H x W
    # use a list of Hashable key (e.g., str) to map the batch input to its corresponding stain matrix in cache.
    # this key should be unique, e.g., using the filename of the input tile.
    # leave it as None if no caching is intended, even if use_cache is enabled.
    # note since the inputs are all batchified, the cache_key are in form of a list, with each element in the 
    # list corresponding to a data point in the batch.
    aug_out = augmentor(norm_tensor, cache_keys=['some unique key'])
    # do anything to the augmentation output

# dump the cache of stain matrices for future usage
augmentor.dump_cache('./cache.pickle')

# fast batch operation
tile_size = 512
tiles: torch.Tensor = norm_tensor.unfold(2, tile_size, tile_size)\
    .unfold(3, tile_size, tile_size).reshape(1, 3, -1, tile_size, tile_size).squeeze(0).permute(1, 0, 2, 3).contiguous()
print(tiles.shape)
# use macenko normalization as example
normalizer_macenko = NormalizerBuilder.build('macenko', use_cache=True,
                                             # use least square solver, along with cache, to perform
                                             # normalization on-the-fly
                                             concentration_method='ls')
normalizer_macenko = normalizer_macenko.to(device)
normalizer_macenko.fit(target_tensor)
normalizer_macenko(tiles)

Stain Matrix Caching

As elaborated in the below in the running time benchmark of fitting, computation of stain matrix could be time-consuming. Therefore, for both Augmentor and Normalizer, an in-memory (device-specified) cache is implemented to store the previously computed stain matrices (typically with size 2 x 3 in H&E/RGB cases). To enable the feature, the use_cache must be enabled, should you use the factory builders to instantiate the Normalizer or Augmentor. Upon the normalization/augmentation procedure, a unique cache_key corresponding to the image input must be defined (e.g., file name). Since both Normalizer and Augmentor are designed as torch.nn.Module to accept batch inputs (tensors of shape B x C x H x W), a list of cache_keys must be given along with the batch image inputs during the forward passing:

normalizer_vahadane(input_batch, cache_keys=list_of_keys_corresponding_to_input_batch)
augmentor(input_batch, cache_keys=list_of_keys_corresponding_to_input_batch)

The next time Normalizer or Augmentor process the images, the corresponding stain matrices will be queried and fetched from cache if they are stored already, rather than recomputing from scratch.

Acknowledgments