The SomaDataIO
R package loads and exports ‘SomaScan’ data via the
SomaLogic Operating Co., Inc. structured text file called an ADAT
(*.adat
). The package also exports auxiliary functions for
manipulating, wrangling, and extracting relevant information from an
ADAT object once in memory. Basic familiarity with the R environment is
assumed, as is the ability to install contributed packages from the
Comprehensive R Archive Network (CRAN).
If you run into any issues/problems with SomaDataIO
full documentation
of the most recent
release can be found
at our website of articles and
workflows. If the issue
persists we encourage you to consult the
issues page and, if
appropriate, submit an issue and/or feature request.
The SomaDataIO
package is licensed under the
MIT
license and is intended solely for research use only (“RUO”) purposes.
The code contained herein may not be used for diagnostic, clinical,
therapeutic, or other commercial purposes.
The easiest way to install SomaDataIO
is to install directly from
CRAN:
install.packages("SomaDataIO")
Alternatively from GitHub:
remotes::install_github("SomaLogic/SomaDataIO")
which installs the most current “development” version from the
repository HEAD
. To install the most recent release, use:
remotes::install_github("SomaLogic/SomaDataIO@*release")
To install a specific tagged release, use:
remotes::install_github("SomaLogic/SomaDataIO@v5.3.0")
The SomaDataIO
package was intentionally developed to contain a
limited number of dependencies from CRAN. This makes the package more
stable to external software design changes but also limits its contained
feature set. With this in mind, SomaDataIO
aims to strike a balance
providing long(er)-term stability and a limited set of features. Below
are the package dependencies (see also the
DESCRIPTION
file):
The Biobase
package is suggested, being required by only two
functions, pivotExpressionSet()
and adat2eSet()
.
Biobase
must be installed separately from
Bioconductor by entering the following
from the R
Console:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("Biobase", version = remotes::bioc_version())
Information about Bioconductor can be found here: https://bioconductor.org/install/
Upon successful installation, load SomaDataIO
as normal:
library(SomaDataIO)
For an index of available commands:
library(help = SomaDataIO)
The SomaDataIO
package comes with four (4) objects available to users
to run canned examples (or analyses). They can be accessed once
SomaDataIO
has been attached via library()
. They are:
example_data
: the original ‘SomaScan’ file (example_data.adat
) can
be found here or
downloaded directly via:
wget https://raw.githubusercontent.com/SomaLogic/SomaLogic-Data/main/example_data.adat
SomaDataIO
it has been replaced by an abbreviated,
light-weight version containing only the first 10 samples:dir(system.file("extdata", package = "SomaDataIO"), full.names = TRUE)
ex_analytes
: the analyte (feature) variables in example_data
ex_anno_tbl
: the annotations table associated with example_data
ex_target_names
: a mapping object for analyte -> target
See also ?SomaScanObjects
*.adat
text file into an R
session as a
soma_adat
object.soma_adat
object.?SeqId
analyte (feature) matching.soma_adat
class.?rownames
helpers that do not break soma_adat
attributes.soma_adat
object as a *.adat
text file.Loading an ADAT text file is simple using read_adat()
:
# Sample file name
f <- system.file("extdata", "example_data10.adat",
package = "SomaDataIO", mustWork = TRUE)
my_adat <- read_adat(f)
# test object class
is.soma_adat(my_adat)
#> [1] TRUE
# S3 print method (forwards -> tibble)
my_adat
#> ══ SomaScan Data ═══════════════════════════════════════════════════════════════
#> SomaScan version V4 (5k)
#> Signal Space 5k
#> Attributes intact ✓
#> Rows 10
#> Columns 5318
#> Clinical Data 34
#> Features 5284
#> ── Column Meta ─────────────────────────────────────────────────────────────────
#> ℹ SeqId, SeqIdVersion, SomaId, TargetFullName, Target, UniProt, EntrezGeneID,
#> ℹ EntrezGeneSymbol, Organism, Units, Type, Dilution, PlateScale_Reference,
#> ℹ CalReference, Cal_Example_Adat_Set001, ColCheck,
#> ℹ CalQcRatio_Example_Adat_Set001_170255, QcReference_170255,
#> ℹ Cal_Example_Adat_Set002, CalQcRatio_Example_Adat_Set002_170255, Dilution2
#> ── Tibble ──────────────────────────────────────────────────────────────────────
#> # A tibble: 10 × 5,319
#> row_names PlateId PlateRunDate ScannerID PlatePosition SlideId Subarray
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 258495800012_3 Example… 2020-06-18 SG152144… H9 2.58e11 3
#> 2 258495800004_7 Example… 2020-06-18 SG152144… H8 2.58e11 7
#> 3 258495800010_8 Example… 2020-06-18 SG152144… H7 2.58e11 8
#> 4 258495800003_4 Example… 2020-06-18 SG152144… H6 2.58e11 4
#> 5 258495800009_4 Example… 2020-06-18 SG152144… H5 2.58e11 4
#> 6 258495800012_8 Example… 2020-06-18 SG152144… H4 2.58e11 8
#> 7 258495800001_3 Example… 2020-06-18 SG152144… H3 2.58e11 3
#> 8 258495800004_8 Example… 2020-06-18 SG152144… H2 2.58e11 8
#> 9 258495800001_8 Example… 2020-06-18 SG152144… H12 2.58e11 8
#> 10 258495800004_3 Example… 2020-06-18 SG152144… H11 2.58e11 3
#> # ℹ 5,312 more variables: SampleId <chr>, SampleType <chr>,
#> # PercentDilution <int>, SampleMatrix <chr>, Barcode <lgl>, Barcode2d <chr>,
#> # SampleName <lgl>, SampleNotes <lgl>, AliquotingNotes <lgl>,
#> # SampleDescription <chr>, …
#> ════════════════════════════════════════════════════════════════════════════════
Please see the article Loading and Wrangling SomaScan for more details and options.
The soma_adat
class comes with numerous class-specific S3 methods to
the most popular dplyr and
tidyr generics.
# see full complement of `soma_adat` methods
methods(class = "soma_adat")
#> [1] [ [[ [[<- [<- ==
#> [6] $ $<- anti_join arrange count
#> [11] filter full_join getAdatVersion getAnalytes getMeta
#> [16] group_by inner_join is_seqFormat left_join Math
#> [21] median merge mutate Ops print
#> [26] rename right_join row.names<- sample_frac sample_n
#> [31] semi_join separate slice_sample slice summary
#> [36] Summary transform ungroup unite
#> see '?methods' for accessing help and source code
Please see the article Loading and Wrangling
SomaScan
for more details about available soma_adat
methods.
The soma_adat
object also contains specific structure that are useful
to users. Please also see ?colmeta
or ?annotations
for further
details about these fields.
This section now lives in individual package articles. For further detail please see:
stats::t.test()
stats::aov()
stats::glm()
stats::lm()
Note that, in an effort to reduce package size and dependencies, these
articles and workflows are only accessible via the SomaDataIO
pkgdown
website, and are not included with the installed package.