PlantSimEngine
is a modelling framework for simulating and modelling plants, soil and atmosphere. It provides tools to prototype, evaluate, test, and deploy plant/crop models at any scale, with a strong emphasis on performance and efficiency.
Key Features:
Benefits:
Improved Accuracy and Reliability:
If you have any questions or feedback, open an issue or ask on discourse.
To install the package, enter the Julia package manager mode by pressing ]
in the REPL, and execute the following command:
add PlantSimEngine
To use the package, execute this command from the Julia REPL:
using PlantSimEngine
The package is designed to be easy to use, and to help users avoid errors when implementing, coupling and simulating models.
Here's a simple example of a model that simulates the growth of a plant, using a simple exponential growth model:
# ] add PlantSimEngine
using PlantSimEngine
# Include the model definition from the examples sub-module:
using PlantSimEngine.Examples
# Define the model:
model = ModelList(
ToyLAIModel(),
status=(TT_cu=1.0:2000.0,), # Pass the cumulated degree-days as input to the model
)
run!(model) # run the model
status(model) # extract the status, i.e. the output of the model
Which gives:
TimeStepTable{Status{(:TT_cu, :LAI...}(1300 x 2):
╭─────┬────────────────┬────────────╮
│ Row │ TT_cu │ LAI │
│ │ Float64 │ Float64 │
├─────┼────────────────┼────────────┤
│ 1 │ 1.0 │ 0.00560052 │
│ 2 │ 2.0 │ 0.00565163 │
│ 3 │ 3.0 │ 0.00570321 │
│ 4 │ 4.0 │ 0.00575526 │
│ 5 │ 5.0 │ 0.00580778 │
│ ⋮ │ ⋮ │ ⋮ │
╰─────┴────────────────┴────────────╯
1295 rows omitted
Note
TheToyLAIModel
is available from the examples folder, and is a simple exponential growth model. It is used here for the sake of simplicity, but you can use any model you want, as long as it followsPlantSimEngine
interface.
Of course you can plot the outputs quite easily:
# ] add CairoMakie
using CairoMakie
lines(model[:TT_cu], model[:LAI], color=:green, axis=(ylabel="LAI (m² m⁻²)", xlabel="Cumulated growing degree days since sowing (°C)"))
Model coupling is done automatically by the package, and is based on the dependency graph between the models. To couple models, we just have to add them to the ModelList
. For example, let's couple the ToyLAIModel
with a model for light interception based on Beer's law:
# ] add PlantSimEngine, DataFrames, CSV
using PlantSimEngine, PlantMeteo, DataFrames, CSV
# Include the model definition from the examples folder:
using PlantSimEngine.Examples
# Import the example meteorological data:
meteo_day = CSV.read(joinpath(pkgdir(PlantSimEngine), "examples/meteo_day.csv"), DataFrame, header=18)
# Define the list of models for coupling:
model = ModelList(
ToyLAIModel(),
Beer(0.6),
status=(TT_cu=cumsum(meteo_day[:, :TT]),), # Pass the cumulated degree-days as input to `ToyLAIModel`, this could also be done using another model
)
The ModelList
couples the models by automatically computing the dependency graph of the models. The resulting dependency graph is:
╭──── Dependency graph ──────────────────────────────────────────╮
│ ╭──── LAI_Dynamic ─────────────────────────────────────────╮ │
│ │ ╭──── Main model ────────╮ │ │
│ │ │ Process: LAI_Dynamic │ │ │
│ │ │ Model: ToyLAIModel │ │ │
│ │ │ Dep: │ │ │
│ │ ╰────────────────────────╯ │ │
│ │ │ ╭──── Soft-coupled model ─────────╮ │ │
│ │ │ │ Process: light_interception │ │ │
│ │ └──│ Model: Beer │ │ │
│ │ │ Dep: (LAI_Dynamic = (:LAI,),) │ │ │
│ │ ╰─────────────────────────────────╯ │ │
│ ╰──────────────────────────────────────────────────────────╯ │
╰────────────────────────────────────────────────────────────────╯
# Run the simulation:
run!(model, meteo_day)
status(model)
Which returns:
TimeStepTable{Status{(:TT_cu, :LAI...}(365 x 3):
╭─────┬────────────────┬────────────┬───────────╮
│ Row │ TT_cu │ LAI │ aPPFD │
│ │ Float64 │ Float64 │ Float64 │
├─────┼────────────────┼────────────┼───────────┤
│ 1 │ 0.0 │ 0.00554988 │ 0.0476221 │
│ 2 │ 0.0 │ 0.00554988 │ 0.0260688 │
│ 3 │ 0.0 │ 0.00554988 │ 0.0377774 │
│ 4 │ 0.0 │ 0.00554988 │ 0.0468871 │
│ 5 │ 0.0 │ 0.00554988 │ 0.0545266 │
│ ⋮ │ ⋮ │ ⋮ │ ⋮ │
╰─────┴────────────────┴────────────┴───────────╯
360 rows omitted
# Plot the results:
using CairoMakie
fig = Figure(resolution=(800, 600))
ax = Axis(fig[1, 1], ylabel="LAI (m² m⁻²)")
lines!(ax, model[:TT_cu], model[:LAI], color=:mediumseagreen)
ax2 = Axis(fig[2, 1], xlabel="Cumulated growing degree days since sowing (°C)", ylabel="aPPFD (mol m⁻² d⁻¹)")
lines!(ax2, model[:TT_cu], model[:aPPFD], color=:firebrick1)
fig
See the Multi-scale modeling section for more details.
The package is designed to be easily scalable, and can be used to simulate models at different scales. For example, you can simulate a model at the leaf scale, and then couple it with models at any other scale, e.g. internode, plant, soil, scene scales. Here's an example of a simple model that simulates plant growth using sub-models operating at different scales:
mapping = Dict(
"Scene" => ToyDegreeDaysCumulModel(),
"Plant" => (
MultiScaleModel(
model=ToyLAIModel(),
mapping=[
:TT_cu => "Scene",
],
),
Beer(0.6),
MultiScaleModel(
model=ToyAssimModel(),
mapping=[:soil_water_content => "Soil"],
),
MultiScaleModel(
model=ToyCAllocationModel(),
mapping=[
:carbon_demand => ["Leaf", "Internode"],
:carbon_allocation => ["Leaf", "Internode"]
],
),
MultiScaleModel(
model=ToyPlantRmModel(),
mapping=[:Rm_organs => ["Leaf" => :Rm, "Internode" => :Rm],],
),
),
"Internode" => (
MultiScaleModel(
model=ToyCDemandModel(optimal_biomass=10.0, development_duration=200.0),
mapping=[:TT => "Scene",],
),
MultiScaleModel(
model=ToyInternodeEmergence(TT_emergence=20.0),
mapping=[:TT_cu => "Scene"],
),
ToyMaintenanceRespirationModel(1.5, 0.06, 25.0, 0.6, 0.004),
Status(carbon_biomass=1.0)
),
"Leaf" => (
MultiScaleModel(
model=ToyCDemandModel(optimal_biomass=10.0, development_duration=200.0),
mapping=[:TT => "Scene",],
),
ToyMaintenanceRespirationModel(2.1, 0.06, 25.0, 1.0, 0.025),
Status(carbon_biomass=1.0)
),
"Soil" => (
ToySoilWaterModel(),
),
);
We can import an example plant from the package:
mtg = import_mtg_example()
Make a fake meteorological data:
meteo = Weather(
[
Atmosphere(T=20.0, Wind=1.0, Rh=0.65, Ri_PAR_f=300.0),
Atmosphere(T=25.0, Wind=0.5, Rh=0.8, Ri_PAR_f=500.0)
]
);
And run the simulation:
out_vars = Dict(
"Scene" => (:TT_cu,),
"Plant" => (:carbon_allocation, :carbon_assimilation, :soil_water_content, :aPPFD, :TT_cu, :LAI),
"Leaf" => (:carbon_demand, :carbon_allocation),
"Internode" => (:carbon_demand, :carbon_allocation),
"Soil" => (:soil_water_content,),
)
out = run!(mtg, mapping, meteo, outputs=out_vars, executor=SequentialEx());
We can then extract the outputs in a DataFrame
and sort them:
using DataFrames
df_out = outputs(out, DataFrame)
sort!(df_out, [:timestep, :node])
timestepInt64 |
organString |
nodeInt64 |
carbon_allocationU{Nothing, Float64} |
TT_cuU{Nothing, Float64} |
carbon_assimilationU{Nothing, Float64} |
aPPFDU{Nothing, Float64} |
LAIU{Nothing, Float64} |
soil_water_contentU{Nothing, Float64} |
carbon_demandU{Nothing, Float64} |
---|---|---|---|---|---|---|---|---|---|
1 | Scene | 1 | 10.0 | ||||||
1 | Soil | 2 | 0.3 | ||||||
1 | Plant | 3 | 10.0 | 0.299422 | 4.99037 | 0.00607765 | 0.3 | ||
1 | Internode | 4 | 0.0742793 | 0.5 | |||||
1 | Leaf | 5 | 0.0742793 | 0.5 | |||||
1 | Internode | 6 | 0.0742793 | 0.5 | |||||
1 | Leaf | 7 | 0.0742793 | 0.5 | |||||
2 | Scene | 1 | 25.0 | ||||||
2 | Soil | 2 | 0.2 | ||||||
2 | Plant | 3 | 25.0 | 0.381154 | 9.52884 | 0.00696482 | 0.2 | ||
2 | Internode | 4 | 0.0627036 | 0.75 | |||||
2 | Leaf | 5 | 0.0627036 | 0.75 | |||||
2 | Internode | 6 | 0.0627036 | 0.75 | |||||
2 | Leaf | 7 | 0.0627036 | 0.75 | |||||
2 | Internode | 8 | 0.0627036 | 0.75 | |||||
2 | Leaf | 9 | 0.0627036 | 0.75 |
An example output of a multiscale simulation is shown in the documentation of PlantBiophysics.jl:
Take a look at these projects that use PlantSimEngine:
The package is developed so anyone can easily implement plant/crop models, use it freely and as you want thanks to its MIT license.
If you develop such tools and it is not on the list yet, please make a PR or contact me so we can add it! 😃 Make sure to read the community guidelines before in case you're not familiar with such things.