PyPartMC is a Python interface to PartMC, a particle-resolved Monte-Carlo code for atmospheric aerosol simulation. PyPartMC is implemented in C++ and it also constitutes a C++ API to the PartMC Fortran internals. The Python API can facilitate using PartMC from other environments - see, e.g., Julia and Matlab examples below.
For an outline of the project, rationale, architecture, and features, refer to: D'Aquino et al., 2024 (SoftwareX) (please cite if PyPartMC is used in your research). For a list of talks and other relevant resources, please see project Wiki. If interested in contributing to PyPartMC, please have a look a the notes for developers.
! pip install PyPartMC
import PyPartMC
Note: clicking the badges below redirects to cloud-computing platforms. The mybinder.org links allow anonymous execution, Google Colab requires logging in with a Google account, ARM JupyerHub requires logging in with an ARM account (and directing Jupyter to a particular notebook within the examples
folder).
pip
(prior PartMC installation not needed)The listings below depict how the identical task of randomly sampling particles from an aerosol size distribution in PartMC can be done in different programming languages.
For a Fortran equivalent of the Python, Julia and Matlab programs below, see the readme_fortran
folder.
import numpy as np
import PyPartMC as ppmc
from PyPartMC import si
aero_data = ppmc.AeroData((
# [density, ions in solution, molecular weight, kappa]
{"OC": [1000 *si.kg/si.m**3, 0, 1e-3 *si.kg/si.mol, 0.001]},
{"BC": [1800 *si.kg/si.m**3, 0, 1e-3 *si.kg/si.mol, 0]},
))
aero_dist = ppmc.AeroDist(
aero_data,
[{
"cooking": {
"mass_frac": [{"OC": [1]}],
"diam_type": "geometric",
"mode_type": "log_normal",
"num_conc": 3200 / si.cm**3,
"geom_mean_diam": 8.64 * si.nm,
"log10_geom_std_dev": 0.28,
}
},
{
"diesel": {
"mass_frac": [{"OC": [0.3]}, {"BC": [0.7]}],
"diam_type": "geometric",
"mode_type": "log_normal",
"num_conc": 2900 / si.cm**3,
"geom_mean_diam": 50 * si.nm,
"log10_geom_std_dev": 0.24,
}
}],
)
n_part = 100
aero_state = ppmc.AeroState(aero_data, n_part, "nummass_source")
aero_state.dist_sample(aero_dist)
print(np.dot(aero_state.masses(), aero_state.num_concs), "# kg/m3")
using Pkg
Pkg.add("PyCall")
using PyCall
ppmc = pyimport("PyPartMC")
si = ppmc["si"]
aero_data = ppmc.AeroData((
# (density, ions in solution, molecular weight, kappa)
Dict("OC"=>(1000 * si.kg/si.m^3, 0, 1e-3 * si.kg/si.mol, 0.001)),
Dict("BC"=>(1800 * si.kg/si.m^3, 0, 1e-3 * si.kg/si.mol, 0))
))
aero_dist = ppmc.AeroDist(aero_data, (
Dict(
"cooking" => Dict(
"mass_frac" => (Dict("OC" => (1,)),),
"diam_type" => "geometric",
"mode_type" => "log_normal",
"num_conc" => 3200 / si.cm^3,
"geom_mean_diam" => 8.64 * si.nm,
"log10_geom_std_dev" => .28,
)
),
Dict(
"diesel" => Dict(
"mass_frac" => (Dict("OC" => (.3,)), Dict("BC" => (.7,))),
"diam_type" => "geometric",
"mode_type" => "log_normal",
"num_conc" => 2900 / si.cm^3,
"geom_mean_diam" => 50 * si.nm,
"log10_geom_std_dev" => .24,
)
)
))
n_part = 100
aero_state = ppmc.AeroState(aero_data, n_part, "nummass_source")
aero_state.dist_sample(aero_dist)
print(aero_state.masses()'aero_state.num_concs, "# kg/m3")
notes (see the PyPartMC Matlab CI workflow for an example on how to achieve it on Ubuntu 20):
dlopened()
by default; one way to make PyPartMC OK with it is to [pip-]install by compiling from source using the very same version of GCC that Matlab borrowed these libraries from (e.g., GCC 9 for Matlab R2022a, etc);pybind11_builtins.py
file with just pybind11_type=type
inside needs to be placed within Matlab's PYTHONPATH
to sort out a Matlab-pybind11 incompatibility. ppmc = py.importlib.import_module('PyPartMC');
si = py.importlib.import_module('PyPartMC').si;
aero_data = ppmc.AeroData(py.tuple({ ...
py.dict(pyargs("OC", py.tuple({1000 * si.kg/si.m^3, 0, 1e-3 * si.kg/si.mol, 0.001}))), ...
py.dict(pyargs("BC", py.tuple({1800 * si.kg/si.m^3, 0, 1e-3 * si.kg/si.mol, 0}))) ...
}));
aero_dist = ppmc.AeroDist(aero_data, py.tuple({ ...
py.dict(pyargs( ...
"cooking", py.dict(pyargs( ...
"mass_frac", py.tuple({py.dict(pyargs("OC", py.tuple({1})))}), ...
"diam_type", "geometric", ...
"mode_type", "log_normal", ...
"num_conc", 3200 / si.cm^3, ...
"geom_mean_diam", 8.64 * si.nm, ...
"log10_geom_std_dev", .28 ...
)) ...
)), ...
py.dict(pyargs( ...
"diesel", py.dict(pyargs( ...
"mass_frac", py.tuple({ ...
py.dict(pyargs("OC", py.tuple({.3}))), ...
py.dict(pyargs("BC", py.tuple({.7}))), ...
}), ...
"diam_type", "geometric", ...
"mode_type", "log_normal", ...
"num_conc", 2900 / si.cm^3, ...
"geom_mean_diam", 50 * si.nm, ...
"log10_geom_std_dev", .24 ...
)) ...
)) ...
}));
n_part = 100;
aero_state = ppmc.AeroState(aero_data, n_part, "nummass_source");
aero_state.dist_sample(aero_dist);
masses = cell(aero_state.masses());
num_concs = cell(aero_state.num_concs);
fprintf('%g # kg/m3\n', dot([masses{:}], [num_concs{:}]))
PyPartMC is used within the test workflow of the PySDM project.
Q: How to install PyPartMC with MOSAIC enabled?
A: Installation can be done using pip
, however, pip
needs to be instructed not to use binary packages available at pypi.org but rather to compile from source (pip will download the source from pip.org), and the path to compiled MOSAIC library needs to be provided at compile-time; the following command should convey it:
MOSAIC_HOME=<<PATH_TO_MOSAIC_LIB>> pip install --force-reinstall --no-binary=PyPartMC PyPartMC
Q: Why pip install PyPartMC
triggers compilation on my brand new Apple machine, while it quickly downloads and installs binary packages when executed on older Macs, Windows or Linux?
A: We are providing binary wheels on PyPI for Apple-silicon (arm64) machines for selected macOS version made available by Github. In case the macOS version you are using is newer, compilation from source is triggered.
Q: Why some of the constructors expect data to be passed as lists of single-entry dictionaries instead of multi-element dictionaries?
A: This is intentional and related with PartMC relying on the order of elements within spec-file input; while Python dictionaries preserve ordering (insertion order), JSON format does not, and we intend to make these data structures safe to be [de]serialized using JSON.
Q: How to check the version of PartMC that PyPartMC was compiled against?
A: Version numbers of compile-time dependencies of PyPartMC, including PartMC, can be accessed as follows:
import PyPartMC
PyPartMC.__versions_of_build_time_dependencies__['PartMC']
Q: Why m4 and perl are required at compile time?
A: PyPartMC includes parts of netCDF and HDF5 codebases which depend on m4 and perl, respectively, for generating source files before compilation.
error: [Errno 2] No such file or directory: 'cmake'
Try rerunning after installing CMake, e.g., using apt-get install cmake
(Ubuntu/Debian), brew install cmake
(homebrew on macOS) or using MSYS2 on Windows.
No CMAKE_Fortran_COMPILER could be found.
Try installing a Fortran compiler (e.g., brew reinstall gcc
with Homebrew on macOS or using MSYS2 on Windows).
Could not find NC_M4 using the following names: m4, m4.exe
Try installing m4
(e.g., using MSYS2 on Windows).
authors: PyPartMC developers
funding: US Department of Energy Atmospheric System Research programme, Polish National Science Centre
copyright: University of Illinois at Urbana-Champaign
licence: GPL v3
authors: Nicole Riemer, Matthew West, Jeff Curtis et al.
licence: GPL v2 or later