Implementation of PointPillars in PyTorch for KITTI 3D Object Detetcion
git clone git@github.com:shangjie-li/pointpillars.git
conda create -n pcdet.v0.5.0 python=3.6
conda activate pcdet.v0.5.0
cd pointpillars
pip install -r requirements.txt
Install spconv
# Try the command below:
pip install spconv-cu102
# If there is `ERROR: Cannot uninstall 'certifi'.`, try:
pip install spconv-cu102 --ignore-installed
cd pointpillars
python setup.py develop
Install visualization tools
pip install mayavi
pip install pyqt5
# If you want import opencv, run:
pip install opencv-python
# If you want import open3d, run:
pip install open3d-python
pointpillars
├── data
│ ├── kitti
│ │ │── ImageSets
│ │ │── training
│ │ │ ├──calib & velodyne & label_2 & image_2 & planes
│ │ │── testing
│ │ │ ├──calib & velodyne & image_2
├── layers
├── utils
# This will create gt_database dir and info files in pointpillars/data/kitti.
cd pointpillars
python -m data.kitti_dataset create_kitti_infos data/config.yaml
Display the dataset
# Display the training dataset with data augmentation
python dataset_player.py --training --data_augmentation --show_boxes
# Display the testing dataset
python dataset_player.py --show_boxes
Run the demo with a pretrained model (Download pointpillar_7728.pth and save it in pointpillars/weights.)
# Run on the testing dataset
python demo.py --ckpt=weights/pointpillar_7728.pth
# Run on a single sample from the testing dataset
python demo.py --ckpt=weights/pointpillar_7728.pth --sample_idx=000008
python train.py --batch_size=2
python test.py --ckpt=weights/pointpillar_7728.pth
AP (R11) BEV | AP (R11) 3D | |
---|---|---|
Car (Iou=0.7) | 89.6590, 87.1725, 84.3762 | 86.4617, 77.2839, 74.6530 |
Pedestrian (Iou=0.5) | 61.6348, 56.2747, 52.6007 | 57.7500, 52.2916, 47.9072 |
Cyclist (Iou=0.5) | 82.2593, 66.1110, 62.5585 | 80.0483, 62.6080, 59.5260 |
* Report in different difficulties, which are Easy, Moderate and Hard.