BertaBescos / DynaSLAM

DynaSLAM is a SLAM system robust in dynamic environments for monocular, stereo and RGB-D setups
https://bertabescos.github.io/DynaSLAM/
Other
829 stars 201 forks source link
dynamic inpainting monocular rgb-d slam stereo

DynaSLAM

[Project] [arXiv] [Journal]

DynaSLAM is a visual SLAM system that is robust in dynamic scenarios for monocular, stereo and RGB-D configurations. Having a static map of the scene allows inpainting the frame background that has been occluded by such dynamic objects.

DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes
Berta Bescos, José M. Fácil, Javier Civera and José Neira
RA-L and IROS, 2018

We provide examples to run the SLAM system in the TUM dataset as RGB-D or monocular, and in the KITTI dataset as stereo or monocular.

News

Getting Started

RGB-D Example on TUM Dataset

If PATH_TO_MASKS and PATH_TO_OUTPUT are not provided, only the geometrical approach is used to detect dynamic objects.

If PATH_TO_MASKS is provided, Mask R-CNN is used to segment the potential dynamic content of every frame. These masks are saved in the provided folder PATH_TO_MASKS. If this argument is no_save, the masks are used but not saved. If it finds the Mask R-CNN computed dynamic masks in PATH_TO_MASKS, it uses them but does not compute them again.

If PATH_TO_OUTPUT is provided, the inpainted frames are computed and saved in PATH_TO_OUTPUT.

Stereo Example on KITTI Dataset

Monocular Example on TUM Dataset

Monocular Example on KITTI Dataset

Citation

If you use DynaSLAM in an academic work, please cite:

@article{bescos2018dynaslam,
  title={{DynaSLAM}: Tracking, Mapping and Inpainting in Dynamic Environments},
  author={Bescos, Berta, F\'acil, JM., Civera, Javier and Neira, Jos\'e},
  journal={IEEE RA-L},
  year={2018}
 }

Acknowledgements

Our code builds on ORB-SLAM2.

DynaSLAM