This package is not maintained at the moment -- please contact if you're interested in collaborating and improving this project.
robustSingleCell is a pipeline designed to identify robust cell subpopulations using scRNAseq data and compare population compositions across tissues and experimental models via similarity analysis as described in Magen et al. (2019) bioRxiv [1].
Install the following dependencies before installing the package:
if(!require(devtools))
install.packages("devtools")
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("limma")
BiocManager::install("grimbough/biomaRt")
You can then install the stable version from CRAN:
install.packages("robustSingleCell")
To access the latest features or bug fixes, you can install the development version from GitHub.
devtools::install_github("asmagen/robustsinglecell")
This pipeline currently supports slurm for parallel batch jobs.
If you identify a bug, please submit an issue with a reproducible example.
We used two replicates of CD44+ T cell data sets from Ciucci
et al. 2019 [2] as an example to demonstrate the use of
robustSingleCell
. The analysis requires at least 8G of memory on
slurm [3] high performance computing workload manager (for example,
you can start by requesting srun --pty -p <partition> --mem=8G -t 1:00:00 bash
to start an interactive session).
We first download the raw 10X data from GEO using GEOquery
, which can
be obtained using the following command if not already installed:
source("https://bioconductor.org/biocLite.R")
biocLite("GEOquery")
The two datasets LCMV1
, LCMV2
will be downloaded into TMPDIR. Each
folder will contain the matrix.mtx
, gene.tsv
and barcode.tsv
files
as in 10X genomics format.
library(robustSingleCell)
download_LCMV()
Note: when using your own data, the 10X genomics files
(matrix.mtx
, gene.tsv
and barcode.tsv
) will be typically located
at outs/filtered_gene_bc_matrices/mm10
, depending on the genome
used for alignment. Copy the contents of this directory to the working
directory data.path
specified in initialize.project
below.
We cluster each dataset separately to account for dataset-specific technical and biological differences. Then, we measure the transcriptional similarity and divergence between the clusters identified in the two datasets using correlation analysis.
First, we set up the directory where the results of the analysis will be stored.
LCMV1 <- initialize.project(datasets = "LCMV1",
origins = "CD44+ cells",
experiments = "Rep1",
data.path = file.path(tempdir(), "LCMV"),
work.path = file.path(tempdir(), "LCMV/LCMV_analysis"))
read.data
function reads the data in 10X genomics format and performs
quality filtering as described in Magen et al 2019. We randomly
downsampled the datasets to 500 cells for this tuutorial.
LCMV1 <- read.data(LCMV1, subsample = 500)
Next, we identify highly variable genes for the following PCA and clustering analyses. We also compute the activation of gene sets of interest, such as cell cycle genes, for confounder correction.
LCMV1 <- get.variable.genes(LCMV1)
exhaustion_markers <- c('Pdcd1', 'Cd244', 'Havcr2', 'Ctla4', 'Cd160', 'Lag3', 'Tigit', 'Cd96')
LCMV1 <- add.confounder.variables(LCMV1,
ribosomal.score = ribosomal.score(LCMV1),
mitochondrial.score = mitochondrial.score(LCMV1),
cell.cycle.score = cell.cycle.score(LCMV1),
Exhaustion = controlled.mean.score(LCMV1, exhaustion_markers))
Figure 1 shows the mitochondrial score versus number of UMIs, pre and post filtering.
The PCA
function performs multiple simulation analyses of shuffled
data to determine the appropriate number of PCs. You can also run each
simulation in parallel using the option local = F
.
LCMV1 <- PCA(LCMV1, local = T)
We then perform clustering analysis for a range of clustering
resolutions. The analysis is repeated multiple times over shuffled data
to estimate the appropriate clustering resolution and control for false
discovery of clusters. At the end of the clustering, the function will
prompt you to choose an optimal clustering resolution. We choose 0.05
for our KNN ratio, which is the smallest value tested with
mdlrty/mean.shfl
> 2.
LCMV1 <- cluster.analysis(LCMV1, local = T)
We select the appropriate resolution, typically the one where there is more than two (2) fold change modularity difference relative to the shuffled analysis.
The summarize
function which performs differential expression
analysis, computes tSNE and visualizes the results in the analysis
folder. After differential expression analysis, get.cluster.names
assigns clusters with names using a customized set of marker genes which
users should adapt to their own data.
types = rbind(
data.frame(type='Tfh',gene=c('Tcf7','Cxcr5','Bcl6')),
data.frame(type='Th1',gene=c('Cxcr6','Ifng','Tbx21')),
data.frame(type='Tcmp',gene=c('Ccr7','Bcl2','Tcf7')),
data.frame(type='Treg',gene=c('Foxp3','Il2ra')),
data.frame(type='Tmem',gene=c('Il7r','Ccr7')),
data.frame(type='CD8',gene=c('Cd8a')),
data.frame(type='CD4', gene = c("Cd4")),
data.frame(type='Cycle',gene=c('Mki67','Top2a','Birc5'))
)
summarize(LCMV1, local = T)
LCMV1_cluster_names <- get.cluster.names(LCMV1, types, min.fold = 1.0, max.Qval = 0.01)
LCMV1 <- set.cluster.names(LCMV1, names = LCMV1_cluster_names)
summarize(LCMV1, local = T)
Figure 3 shows violin plots indicating the activation of the cell cycle genes.
Figure 4 places individual cells on a two dimensional grid corresponding
to the scores of the first two PCs (note that the PCA figures are
created in the next step via summarize
function below).
The genes driving the PCs are visualized in figure 5 according to the PCA loadings after removing the lowly ranked genes.
The average expression of genes driving the PCs can be visualized as a heatmap visualized in figure 6 according to the PCA loadings after removing the lowly ranked genes.
Figure 7 shows the tSNE visualization of the cells, color coded by cluster assignment.
We can also visualize the average expression of selected T cells marker genes for initial evaluation (Figure 8).
canonical_genes <- c("Cd8a", "Cd4", "Mki67", "Foxp3", "Il2ra", "Bcl6",
"Cxcr5", "Cxcr6", "Ifng", "Tbx21", "Id2", "Rora",
"Cxcr3", "Tcf7", "Ccr7", "Cxcr4", "Pdcd1", "Ctla4")
plot_simple_heatmap(LCMV1, name = "canonical", markers = canonical_genes, main = "Expression of marker genes")
We repeat the same procedure for LCMV2
dataset.
LCMV2 <- initialize.project(datasets = "LCMV2",
origins = "CD44+ cells",
experiments = "Rep2",
data.path = file.path(tempdir(), "LCMV"),
work.path = file.path(tempdir(), "LCMV/LCMV_analysis"))
LCMV2 <- read.data(LCMV2, subsample = 500)
LCMV2 <- get.variable.genes(LCMV2)
LCMV2 <- add.confounder.variables(
LCMV2,
ribosomal.score = ribosomal.score(LCMV2),
mitochondrial.score = mitochondrial.score(LCMV2),
cell.cycle.score = cell.cycle.score(LCMV2),
Exhaustion = controlled.mean.score(LCMV2, exhaustion_markers))
LCMV2 <- PCA(LCMV2, local = T)
LCMV2 <- cluster.analysis(LCMV2, local = T)
summarize(LCMV2, local = T)
LCMV2_cluster_names <- get.cluster.names(LCMV2, types, min.fold = 1.0, max.Qval = 0.01)
LCMV2 <- set.cluster.names(LCMV2, names = LCMV2_cluster_names)
summarize(LCMV2, local = T)
plot_simple_heatmap(LCMV2, name = "canonical", markers = canonical_genes, main = "Expression of marker genes")
We then initialize the aggregate analysis of the two independent runs, providing the information of which analyses folders should be used to pull the data for integration.
pooled_env <- initialize.project(datasets = c("LCMV1", "LCMV2"),
origins = c("CD44+ cells", "CD44+ cells"),
experiments = c("Rep1", "Rep2"),
data.path = file.path(tempdir(), "LCMV"),
work.path = file.path(tempdir(), "LCMV/LCMV_analysis"))
pooled_env <- read.preclustered.datasets(pooled_env)
pooled_env <- add.confounder.variables(
pooled_env,
ribosomal.score = ribosomal.score(pooled_env),
mitochondrial.score = mitochondrial.score(pooled_env),
cell.cycle.score = cell.cycle.score(pooled_env),
Exhaustion = controlled.mean.score(pooled_env, exhaustion_markers))
pooled_env <- PCA(pooled_env, clear.previously.calculated.clustering = F, local = T)
summarize(pooled_env, contrast = "datasets", local = T)
We assessed the similarity between pairs of clusters and identify reproducible subpopulations across the two replicates. Figure 9 shows the correlation between clusters’ FC vectors across replicates (as described in Magen et al 2019).
cluster.similarity <- assess.cluster.similarity(pooled_env)
similarity <- cluster.similarity$similarity
map <- cluster.similarity$map
filtered.similarity <- get.robust.cluster.similarity(
pooled_env, similarity, min.sd = qnorm(.9), max.q.val = 0.01, rerun = F
)
robust.clusters <- sort(unique(c(filtered.similarity$cluster1,
filtered.similarity$cluster2)))
visualize.cluster.cors.heatmaps(pooled_env, pooled_env$work.path,
filtered.similarity)
Finally, the cluster similarity between all clusters integrated by this analysis is shown in Figure 10. Unlike the simplified example shown here, this analysis is typically used for estimating subpopulation similarity and divergence across multiple tissue-origins or experimental settings, including corresponding pre-clinical to clinical datasets as described in Magen et al 2019.
similarity <- filtered.similarity
visualize.cluster.similarity.stats(pooled_env, similarity)
differential.expression.statistics = get.robust.markers(
pooled_env, cluster_group1 = c('LCMV2_Tfh_CD4', 'LCMV2_Tfh_Tcmp_CD4'),
cluster_group2 = c('LCMV2_CD8_1', 'LCMV2_CD8_2'),
group1_label = 'CD4 T Cells', group2_label = 'CD8 T Cells')
Using the expression statistics output and the figure (generated to ‘robust.diff.exp.pdf’) you may identify genes showing exclusive expression in one (or more) selected population (cluster_group1) versus the others (cluster_group2). We can annotate the tSNE with the expression level of selected genes or draw contour plots resembling Flow Cytometric analysis.
plot_contour_overlay_tSNE(pooled_env, genes = c('Cd4','Cd8a'))
plot_pair_scatter(pooled_env, gene1 = 'Cd4', gene2 = 'Cd8a',
cluster_group1 = c('LCMV2_Tfh_CD4', 'LCMV2_Tfh_Tcmp_CD4'),
cluster_group2 = c('LCMV2_CD8_1','LCMV2_CD8_2'),
group1_label = 'CD4 T Cells', group2_label = 'CD8 T Cells')
Magen et al. “Single-cell profiling of tumor-reactive CD4+ T-cells reveals unexpected transcriptomic diversity” bioRxiv 543199
Ciucci, Thomas, et al. “The Emergence and Functional Fitness of Memory CD4+ T Cells Require the Transcription Factor Thpok.” Immunity 50.1 (2019): 91-105.