tinygo-org / tinygo

Go compiler for small places. Microcontrollers, WebAssembly (WASM/WASI), and command-line tools. Based on LLVM.
https://tinygo.org
Other
15.49k stars 913 forks source link
adafruit arduino arm avr esp32 gpio hacktoberfest i2c llvm microbit microcontroller nrf51 nrf52 samd21 spi stm32 tinygo wasi wasm webassembly

TinyGo - Go compiler for small places

Linux macOS Windows Docker Nix CircleCI

TinyGo is a Go compiler intended for use in small places such as microcontrollers, WebAssembly (wasm/wasi), and command-line tools.

It reuses libraries used by the Go language tools alongside LLVM to provide an alternative way to compile programs written in the Go programming language.

Embedded

Here is an example program that blinks the built-in LED when run directly on any supported board with onboard LED:

package main

import (
    "machine"
    "time"
)

func main() {
    led := machine.LED
    led.Configure(machine.PinConfig{Mode: machine.PinOutput})
    for {
        led.Low()
        time.Sleep(time.Millisecond * 1000)

        led.High()
        time.Sleep(time.Millisecond * 1000)
    }
}

The above program can be compiled and run without modification on an Arduino Uno, an Adafruit ItsyBitsy M0, or any of the supported boards that have a built-in LED, just by setting the correct TinyGo compiler target. For example, this compiles and flashes an Arduino Uno:

tinygo flash -target arduino examples/blinky1

WebAssembly

TinyGo is very useful for compiling programs both for use in browsers (WASM) as well as for use on servers and other edge devices (WASI).

TinyGo programs can run in Fastly Compute, Fermyon Spin, wazero and many other WebAssembly runtimes.

Here is a small TinyGo program for use by a WASI host application:

package main

//go:wasm-module yourmodulename
//export add
func add(x, y uint32) uint32 {
    return x + y
}

// main is required for the `wasip1` target, even if it isn't used.
func main() {}

This compiles the above TinyGo program for use on any WASI runtime:

tinygo build -o main.wasm -target=wasip1 main.go

Installation

See the getting started instructions for information on how to install TinyGo, as well as how to run the TinyGo compiler using our Docker container.

Supported targets

Embedded

You can compile TinyGo programs for over 94 different microcontroller boards.

For more information, please see https://tinygo.org/docs/reference/microcontrollers/

WebAssembly

TinyGo programs can be compiled for both WASM and WASI targets.

For more information, see https://tinygo.org/docs/guides/webassembly/

Operating Systems

You can also compile programs for Linux, macOS, and Windows targets.

For more information:

Currently supported features:

For a description of currently supported Go language features, please see https://tinygo.org/lang-support/.

Documentation

Documentation is located on our web site at https://tinygo.org/.

You can find the web site code at https://github.com/tinygo-org/tinygo-site.

Getting help

If you're looking for a more interactive way to discuss TinyGo usage or development, we have a #TinyGo channel on the Gophers Slack.

If you need an invitation for the Gophers Slack, you can generate one here which should arrive fairly quickly (under 1 min): https://invite.slack.golangbridge.org

Contributing

Your contributions are welcome!

Please take a look at our Contributing page on our web site for details.

Project Scope

Goals:

Non-goals:

Why this project exists

We never expected Go to be an embedded language and so its got serious problems...

-- Rob Pike, GopherCon 2014 Opening Keynote

TinyGo is a project to bring Go to microcontrollers and small systems with a single processor core. It is similar to emgo but a major difference is that we want to keep the Go memory model (which implies garbage collection of some sort). Another difference is that TinyGo uses LLVM internally instead of emitting C, which hopefully leads to smaller and more efficient code and certainly leads to more flexibility.

The original reasoning was: if Python can run on microcontrollers, then certainly Go should be able to run on even lower level micros.

License

This project is licensed under the BSD 3-clause license, just like the Go project itself.

Some code has been copied from the LLVM project and is therefore licensed under a variant of the Apache 2.0 license. This has been clearly indicated in the header of these files.

Some code has been copied and/or ported from Paul Stoffregen's Teensy libraries and is therefore licensed under PJRC's license. This has been clearly indicated in the header of these files.