Please refer to the documentation for more in depth details.
Berg JA, et. al. (2020). XPRESSyourself: Enhancing, standardizing, and
automating ribosome profiling computational analyses yields improved insight
into data. PLoS Comp Biol. doi: https://doi.org/10.1371/journal.pcbi.1007625
The following is a short tutorial showing you how to install XPRESSpipe:
NOTE: Previous versions utilized the pip install .
command to install. Users of >= v0.6.3 should instead use bash install.sh
$ echo 'export PATH=$PATH:/path/to/xpresspipe' >> ~/.bash_profile
~/.bash_profile
, try looking for one called ~/.profile
$ curl -L -O https://github.com/XPRESSyourself/XPRESSpipe/archive/refs/tags/v0.6.3.zip
$ unzip XPRESSpipe-v0.6.3.zip
$ cd XPRESSpipe-v0.6.3/
$ conda install -c conda-forge mamba
$ mamba env create -f requirements.yml # Or requirements_frozen.yml for a recent working dependency set
$ conda activate xpresspipe
$ bash install.sh
$ xpresspipe -h
$ xpresspipe test
You can also use the XPRESSpipe command builder and executor for reference curation or running the pipeline by executing the following:
$ xpresspipe build
input
directory with raw sequence data
FASTQ
format and end in .fastq
or .fq
and can be .zip
or .gz
compressedoutput
directoryreference
directory (see documentation for curateReference
for more details)In order for ordered output after alignment (except for generation of a raw counts table), recommended file naming conventions should be followed.
ExperimentName_BackgroundA_FP.fastq(.qz)
ExperimentName_BackgroundA_RNA.fastq(.qz)
ExperimentName_BackgroundB_FP.fastq(.qz)
ExperimentName_BackgroundB_RNA.fastq(.qz)
ExperimentName_BackgroundC_FP.fastq(.qz)
ExperimentName_BackgroundC_RNA.fastq(.qz)
ExperimentName_a_WT.fastq(.qz)
ExperimentName_a_WT.fastq(.qz)
ExperimentName_b_exType.fastq(.qz)
ExperimentName_b_exType.fastq(.qz)
ExperimentName_a_WT_1.fastq(.qz)
ExperimentName_a_WT_1.fastq(.qz)
ExperimentName_a_WT_2.fastq(.qz)
ExperimentName_a_WT_2.fastq(.qz)
ExperimentName_b_exType_1.fastq(.qz)
ExperimentName_b_exType_1.fastq(.qz)
ExperimentName_b_exType_2.fastq(.qz)
ExperimentName_b_exType_2.fastq(.qz)
We can run a test dataset as in the associated manuscript by downloading the FASTQ files from GSE65778 using the SRAtoolkit.
We can curate the reference like so:
$ xpresspipe curateReference -o /path/to/reference -f /path/to/reference/genome_fastas -g /path/to/reference/transcripts.gtf -p -t --sjdbOverhang 49
And we can process the dataset like so:
xpresspipe riboseq -i /path/to/input -o /path/to/output -r /path/to/reference/ --gtf /path/to/reference//transcripts_CT.gtf -e isrib_test_study -a CTGTAGGCACCATCAAT --sjdbOverhang 49
The above steps will be very computationally intensive, so we recommend running this on a supercomputing cluster
Scripts used to analyze this data can be found here and here and here
Alternatively, smaller test datasets can be found within the XPRESSpipe tests
folder and an outline of commands to run can be found here
Information on updates to the software can be found here.