blackcoffeerobotics / bcr_bot

A Gazebo-ROS AMR robot with differential drive, depth camera, IMU and 2D LiDAR
https://blackcoffeerobotics.com/blog/migration-from-gazebo-classic-to-ignition-with-ros-2
Apache License 2.0
149 stars 34 forks source link
gazebo-ros gazebo-simulator gazebosim gz ignition-gazebo ignition-robotics robotics robotics-simulation ros ros2 ros2-humble

New BCR Robot

https://github.com/blackcoffeerobotics/bcr_bot/assets/13151010/0fc570a3-c70c-415b-8222-b9573d5911c8

About

This repository contains a Gazebo simulation for a differential drive robot, equipped with an IMU, a depth camera, stereo camera and a 2D LiDAR. The primary contriution of this project is to support multiple ROS and Gazebo distros. Currently, the project supports the following versions -

  1. ROS Noetic + Gazebo Classic 11 (branch ros1)
  2. ROS2 Humble + Gazebo Classic 11 (branch ros2)
  3. ROS2 Humble + Gazebo Fortress (branch ros2)
  4. ROS2 Humble + Gazebo Harmonic (branch ros2)

Each of the following sections describes depedencies, build and run instructions for each of the above combinations

Noetic + Classic (Ubuntu 20.04)

Dependencies

In addition to ROS1 Noetic and Gazebo Classic installations, the dependencies can be installed with rosdep

# From the root directory of the workspace. This will install everything mentioned in package.xml
rosdep install --from-paths src --ignore-src -r -y

Source Build

catkin build --packages-select bcr_bot

Binary Install

To install BCR bot in the binaries:

sudo apt-get install ros-noetic-bcr-bot

Run

To launch the robot in Gazebo,

roslaunch bcr_bot gazebo.launch

To view in rviz,

roslaunch bcr_bot rviz.launch

Configuration

The launch file accepts multiple launch arguments,

roslaunch bcr_bot gazebo.launch 
    camera_enabled:=True \
    two_d_lidar_enabled:=True \
    position_x:=0.0 \
    position_y:=0.0 \
    orientation_yaw:=0.0 \
    odometry_source:=world \
    world_file:=small_warehouse.world \
    robot_namespace:="bcr_bot"

Note: To use stereo_image_proc with the stereo images excute following command:

ROS_NAMESPACE=bcr_bot/stereo_camera rosrun stereo_image_proc stereo_image_proc

Humble + Classic (Ubuntu 22.04)

Dependencies

In addition to ROS2 Humble and Gazebo Classic installations, we need to manually install gazebo_ros_pkgs (since the same branch supports Classic and Fortress)

sudo apt-get install ros-humble-gazebo-ros-pkgs

Remainder of the dependencies can be installed with rosdep

# From the root directory of the workspace. This will install everything mentioned in package.xml
rosdep install --from-paths src --ignore-src -r -y

Source Build

colcon build --packages-select bcr_bot

Binary Install

To install BCR bot in the binaries:

sudo apt-get install ros-humble-bcr-bot

Run

To launch the robot in Gazebo,

ros2 launch bcr_bot gazebo.launch.py

To view in rviz,

ros2 launch bcr_bot rviz.launch.py

Configuration

The launch file accepts multiple launch arguments,

ros2 launch bcr_bot gazebo.launch.py \
    camera_enabled:=True \
    two_d_lidar_enabled:=True \
    stereo_camera_enabled:=False \
    position_x:=0.0 \
    position_y:=0.0 \
    orientation_yaw:=0.0 \
    odometry_source:=world \
    world_file:=small_warehouse.sdf \
    robot_namespace:="bcr_bot"

Note: To use stereo_image_proc with the stereo images excute following command:

ros2 launch stereo_image_proc stereo_image_proc.launch.py left_namespace:=bcr_bot/stereo_camera/left right_namespace:=bcr_bot/stereo_camera/right

Humble + Fortress (Ubuntu 22.04)

Dependencies

In addition to ROS2 Humble and Gazebo Fortress installations, we need to manually install interfaces between ROS2 and Gazebo sim as follows,

sudo apt-get install ros-humble-ros-gz-sim ros-humble-ros-gz-bridge ros-humble-ros-gz-interfaces 

Remainder of the dependencies can be installed with rosdep

# From the root directory of the workspace. This will install everything mentioned in package.xml
rosdep install --from-paths src --ignore-src -r -y

Source Build

colcon build --packages-select bcr_bot

Binary Install

To install BCR bot in the binaries:

sudo apt-get install ros-humble-bcr-bot

Run

To launch the robot in Gazebo,

ros2 launch bcr_bot ign.launch.py

To view in rviz,

ros2 launch bcr_bot rviz.launch.py

Configuration

The launch file accepts multiple launch arguments,

ros2 launch bcr_bot ign.launch.py \
    camera_enabled:=True \
    stereo_camera_enabled:=False \
    two_d_lidar_enabled:=True \
    position_x:=0.0 \
    position_y:=0.0  \
    orientation_yaw:=0.0 \
    odometry_source:=world \
    world_file:=small_warehouse.sdf

Note: To use stereo_image_proc with the stereo images excute following command:

ros2 launch stereo_image_proc stereo_image_proc.launch.py left_namespace:=bcr_bot/stereo_camera/left right_namespace:=bcr_bot/stereo_camera/right

Humble + Harmonic (Ubuntu 22.04)

Dependencies

In addition to ROS2 Humble and Gazebo Harmonic installations, we need to manually install interfaces between ROS2 and Gazebo sim as follows,

sudo apt-get install ros-humble-ros-gzharmonic

Remainder of the dependencies can be installed with rosdep

# From the root directory of the workspace. This will install everything mentioned in package.xml
rosdep install --from-paths src --ignore-src -r -y

Build

colcon build --packages-select bcr_bot

Run

To launch the robot in Gazebo,

ros2 launch bcr_bot gz.launch.py

To view in rviz,

ros2 launch bcr_bot rviz.launch.py

Configuration

The launch file accepts multiple launch arguments,

ros2 launch bcr_bot gz.launch.py \
    camera_enabled:=True \
    stereo_camera_enabled:=False \
    two_d_lidar_enabled:=True \
    position_x:=0.0 \
    position_y:=0.0  \
    orientation_yaw:=0.0 \
    odometry_source:=world \
    world_file:=small_warehouse.sdf

Note:

  1. To use stereo_image_proc with the stereo images excute following command:
    ros2 launch stereo_image_proc stereo_image_proc.launch.py left_namespace:=bcr_bot/stereo_camera/left right_namespace:=bcr_bot/stereo_camera/right
  2. Harmonic support is not available in the bcr_bot binaries yet.

Warning: gz-harmonic cannot be installed alongside gazebo-classic (eg. gazebo11) since both use the gz command line tool.

Mapping with SLAM Toolbox

SLAM Toolbox is an open-source package designed to map the environment using laser scans and odometry, generating a map for autonomous navigation.

NOTE: The command to run mapping is common between all versions of gazebo.

To start mapping:

ros2 launch bcr_bot mapping.launch.py

Use the teleop twist keyboard to control the robot and map the area:

ros2 run teleop_twist_keyboard teleop_twist_keyboard cmd_vel:=/bcr_bot/cmd_vel

To save the map:

cd src/bcr_bot/config
ros2 run nav2_map_server map_saver_cli -f bcr_map

Using Nav2 with bcr_bot

Nav2 is an open-source navigation package that enables a robot to navigate through an environment easily. It takes laser scan and odometry data, along with the map of the environment, as inputs.

NOTE: The command to run navigation is common between all versions of gazebo.

To run Nav2 on bcr_bot:

ros2 launch bcr_bot nav2.launch.py

Simulation and Visualization

  1. Gz Sim (Ignition Gazebo) (small_warehouse World):

  2. Rviz (Depth camera) (small_warehouse World):