virtual-vehicle / pointcloudset

Efficient analysis of large datasets of point clouds recorded over time
https://virtual-vehicle.github.io/pointcloudset/
MIT License
44 stars 7 forks source link
3d 4d 4d-point-cloud convert lidar lidar-point-cloud open3d ouster point-cloud pointcloud python riegl ros ros2 rosbag rostopic time-series time-series-analysis velodyne-sensor

pointcloudset

Analyze large datasets of point clouds recorded over time in an efficient way.

.. image:: https://github.com/virtual-vehicle/pointcloudset/actions/workflows/tests_docker.yml/badge.svg :target: https://github.com/virtual-vehicle/pointcloudset/actions/workflows/tests_docker.yml :alt: test status

.. image:: images/coverage.svg :target: https://github.com/virtual-vehicle/pointcloudset/actions/workflows/tests.yml :alt: test coverage

.. image:: https://github.com/virtual-vehicle/pointcloudset/actions/workflows/doc.yml/badge.svg :target: https://virtual-vehicle.github.io/pointcloudset/ :alt: Documentation Status

.. image:: https://github.com/virtual-vehicle/pointcloudset/actions/workflows/docker.yml/badge.svg :target: https://hub.docker.com/repository/docker/tgoelles/pointcloudset :alt: Docker

.. image:: https://badge.fury.io/py/pointcloudset.svg :target: https://badge.fury.io/py/pointcloudset :alt: PyPi badge

.. image:: https://pepy.tech/badge/pointcloudset/month :target: https://pepy.tech/project/pointcloudset :alt: PyPi badge

.. image:: https://joss.theoj.org/papers/10.21105/joss.03471/status.svg :target: https://joss.theoj.org/papers/10.21105/joss.03471# :alt: JOSS badge

.. image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black :alt: code style black

.. inclusion-marker-do-not-remove

Code | Documentation

.. _Code: https://github.com/virtual-vehicle/pointcloudset .. _Documentation: https://virtual-vehicle.github.io/pointcloudset/

Features ################################################

.. code-block:: python

newpointcloud = pointcloud.limit("x",-5,5).filter("quantile","reflectivity", ">",0.5)

.. code-block:: python

def isolate_target(frame: PointCloud) -> PointCloud: return frame.limit("x",0,1).limit("y",0,1)

def diff_to_pointcloud(pointcloud: PointCloud, to_compare: PointCloud) -> PointCloud: return pointcloud.diff("pointcloud", to_compare)

result = dataset.apply(isolate_target).apply(diff_to_pointcloud, to_compare=dataset[0])

.. code-block:: python

dataset.agg(["min","max","mean","std"])

.. image:: https://raw.githubusercontent.com/virtual-vehicle/pointcloudset/master/images/dask.gif :width: 600

.. image:: https://raw.githubusercontent.com/virtual-vehicle/pointcloudset/master/images/tree.gif :width: 600

Use case examples ################################################

Installation with pip ################################################

Install python package with pip:

.. code-block:: console

pip install pointcloudset

Installation with Docker ################################################

The easiest way to get started is to use the pre-build docker tgoelles/pointcloudset_ or use tgoelles/pointcloudset_base_ to get a container with all dependencies and install pointcloudset there.

.. _tgoelles/pointcloudset_base: https://hub.docker.com/repository/docker/tgoelles/pointcloudset_base .. _tgoelles/pointcloudset: https://hub.docker.com/repository/docker/tgoelles/pointcloudset

Quickstart ################################################

.. code-block:: python

from pointcloudset import Dataset, PointCloud from pathlib import Path import urllib.request

urllib.request.urlretrieve("https://github.com/virtual-vehicle/pointcloudset/raw/master/tests/testdata/test.bag", "test.bag") urllib.request.urlretrieve("https://github.com/virtual-vehicle/pointcloudset/raw/master/tests/testdata/las_files/test_tree.las", "test_tree.las")

dataset = Dataset.from_file(Path("test.bag"), topic="/os1_cloud_node/points", keep_zeros=False) pointcloud = dataset[1] tree = PointCloud.from_file(Path("test_tree.las"))

tree.plot("x", hover_data=True)

This produces the plot from the animation above.

.. _html documentation: https://virtual-vehicle.github.io/pointcloudset/ .. _tutorial notebooks: https://github.com/virtual-vehicle/pointcloudset/tree/master/doc/sphinx/source/tutorial_notebooks

CLI to convert ROS1 and ROS2 files: pointcloudset convert ##########################################################

The package includes a powerful CLI to convert pointclouds in ROS1 & 2 files into many formats like pointcloudset, csv, las and many more. It is capable of handling both mcap and db3 ROS files.

.. code-block:: console

pointcloudset convert --output-format csv --output-dir converted_csv test.bag

.. image:: https://raw.githubusercontent.com/virtual-vehicle/pointcloudset/master/images/cli_demo.gif :width: 600

You can view PointCloud2 messages with

.. code-block:: console

pointcloudset topics test.bag

Comparison to related packages ################################################

. ROS <http://wiki.ros.org/rosbag/Code%20API>_ - bagfiles can contain many point clouds from different sensors.

The downside of the format is that it is only suitable for serial access and not well suited for data analytics and post processing.

. pyntcloud <https://github.com/daavoo/pyntcloud>_ - Only for single point clouds. This package is used as the basis for the

PointCloud object.

. open3d <https://github.com/intel-isl/Open3D>_ - Only for single point clouds. Excellent package, which is used for some

methods on the PointCloud.

. pdal <https://github.com/PDAL/PDAL>_ - Works also with pipelines on point clouds but is mostly focused on single point cloud processing.

Pointcloudset is purely in python and based on pandas DataFrames. In addition pointcloudset works in parallel to process large datasets.

Citation and contact ################################################

.. |orcid| image:: https://orcid.org/sites/default/files/images/orcid_16x16.png :target: https://orcid.org/0000-0002-3925-6260>

|orcid| Thomas Gölles <https://orcid.org/0000-0002-3925-6260>_ email: thomas.goelles@v2c2.at

Please cite our JOSS paper_ if you use pointcloudset.

.. _JOSS paper: https://joss.theoj.org/papers/10.21105/joss.03471#

.. code-block:: bib

@article{Goelles2021, doi = {10.21105/joss.03471}, url = {https://doi.org/10.21105/joss.03471}, year = {2021}, publisher = {The Open Journal}, volume = {6}, number = {65}, pages = {3471}, author = {Thomas Goelles and Birgit Schlager and Stefan Muckenhuber and Sarah Haas and Tobias Hammer}, title = {pointcloudset: Efficient Analysis of Large Datasets of Point Clouds Recorded Over Time}, journal = {Journal of Open Source Software} }